Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 114-122    DOI: 10.11901/1005.3093.2021.103
  研究论文 本期目录 | 过刊浏览 |
基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能
张红亮, 赵国庆, 欧军飞(), Amirfazli Alidad
江苏理工学院材料工程学院 常州 213000
Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation
ZHANG Hongliang, ZHAO Guoqing, OU Junfei(), Amirfazli Alidad
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213000, China
引用本文:

张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
Hongliang ZHANG, Guoqing ZHAO, Junfei OU, Alidad Amirfazli. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. Chinese Journal of Materials Research, 2022, 36(2): 114-122.

全文: PDF(11536 KB)   HTML
摘要: 

将棉织物浸入多巴胺、硝酸银、十六烷基三甲氧基硅烷的乙醇溶液中,取出烘干制备出超疏水棉织物。用扫描电子显微镜和X射线光电子能谱表征其表面形貌和元素,用接触角测量仪测量其接触角并进行摩擦或液体浸泡(如酸、碱、沸水)实验检测其耐用性。结果表明,聚多巴胺的强附着性使原位生成的银纳米粒子能经受摩擦或不同液体的浸泡,从而使超疏水织物具有良好的耐用性。超疏水棉织物还具有良好的油水分离性能,其油水分离效率高达97%,油流量最高可达15.93 m3·m-2·h-1

关键词 材料表面与界面荷叶效应贻贝效应耐用性废水处理    
Abstract

Superhydrophobic fabric was fabricated by dipping the cotton fabric into ethanol solution of dopamine, silver nitrate and hexdecyltrimethoxysilane followed by bakingdry, and of which the surface morphology and chemical composition were characterized by scanning electron microscope and x-ray photoelectron spectroscope, respectively. Surface wettability was measured by contact angle meter. Durability was assessed by abrasion or immersion in different aqueous solutions of acid, alkali, or boiling water. Results show that the in-situ-generated Ag particles were retained after abrasion or immersion test due to the high adhesion of polydopamine; thus, the so-obtained superhydrophobic fabric possessed good durability. Moreover, the superhydrophobic fabric showed good oil-water separation performance with oil-water separation efficiency up to 97% and oil flow up to 15.93 m3·m-2·h-1.

Key wordssurface and interface in the materials    lotus effect    mussel effect    durability    wastewater treatment
收稿日期: 2021-01-19     
ZTFLH:  O631  
基金资助:国家自然科学基金(52073127);常州市科技计划(CM20-193004)
作者简介: 张红亮,男,1996年,硕士生
Soluten=1n=2n=3n=4n=5
DA2.04.06.08.010.0
AgNO31.63.24.86.48.0
表1  用于制备TF-nC-mC样品的多巴胺和硝酸银的浓度
图1  TF-nC-mC的制备原理图、原始棉织物的微观形貌图、TF-nC-mC样品的微观形貌随着浓度系数n和沉积循环次数m的变化
TF-nC-5CTF-3C-mC
Contact angle/(°)Sliding angle/(°)Contact angle/(°)Sliding angle/(°)
n=1153.8±1.715±1.6--
n=2159.2±1.89±1.1--
n=3161.3±1.95±1.8--
n=4159.7±1.68±1.2--
n=5150.1±1.812±1.3--
m=1--0-
m=2--144.8±1.523±1.6
m=3--160.3±1.96±1.8
m=4--160.8±1.46±1.3
m=5--161.2±1.35±1.4
表2  TF-nC-mC样品表面润湿性与浓度倍数n和沉积循环次数m的关系
图2  TF-3C-5C样品和原始棉织物的XPS全谱、Ag3d高分辨谱、原始棉织物的C1s高分辨谱以及TF-3C-5C样品的C1s高分辨谱
图3  超声波处理、清洗、沸水、碱、酸和磨损试验后表面形态的变化
TestingCA/(°)ΔE*abN% (4.56)&Ag% (1.12)&Si% (5.35)&
Ultrasonicating for 5 h151.2±1.517.83.510.983.62
Laundering for 30 cycles149.1±1.117.43.810.434.96
Water boiling for 72 h149.8±1.315.44.280.844.41
Alkali soaking for 72 h150.9±0.917.63.951.064.28
Acid soaking for 168 h148.7±1.215.34.361.034.82
Abrading for 200 cycles132.6±1.214.74.040.823.62
表3  耐用性测试后样品的表面形貌、表面润湿性以及表面化学的变化
图4  超疏水织物TF-3C-C的表面湿润性与超声清洗时间、加速洗涤次数、沸水处理时间碱液浸泡时间、酸液浸泡时间以及摩擦次数的关系
SF-3C-5CComparisonSamples in referenceRef.
Ultrasonic cleaningCA=157.2° and SA=9° after 1 h in ethanol>CA varied from 159° to 150° after 1 h in ethanol[22]
<CA varied from 154° to 152° after 24 h in acetone[23]
LaunderingCA=152° and SA=18° after 25 cycles>CA varied from 157° to 147° after 20 cycles[20]
<CA varied from 152° to ca. 150° after 100 cycles[24]
Water BoilingCA=152.2° and SA=18° after 48 h>CA varied to ca. 150° and SA increased to 15° after 35 min[25]
Alkali SoakingCA=153.2° and SA=14° after 48 h>CA varied from 156.3° to 152.2° after 48 h[20]
CA varied from 156.9° to 151.6° after 48 h[26]
Acid SoakingCA>157.7° and SA=6° after 48 h>

CA varied from 154.7° to 150.6° after 12 h

CA varied from 156.9° to 142.3° after 24 h

CA varied from 156.3° to 152.5° after 48 h

[27]

[26]

[20]

AbradingCA=132.6° and SA<30° after 200 cycles<CA and SA remained almost unchanged after 200 cycles[28]
表4  TF-3C-5C超疏水织物的耐用性与文献值的对比
图5  超疏水织物对正己烷(油红染色)和三氯甲烷(油红染色)的选择性吸附
图6  使用TF-3C-5C超疏水织物分离膜进行油水分离
1 Ge M Z , Cao C Y , Huang J Y , et al . Rational design of materials interface at nanoscale towards intelligent oil-water separation [J]. Nanoscale Horiz., 2018, 3: 235
2 Li J , Kang R M , Tang X H , et al . Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation [J]. Nanoscale, 2016, 8: 7638
3 Karaman M , Çabuk N , Özyurt D , et al . Self-supporting superhydrophobic thin polymer sheets that mimic the nature's petal effect [J]. Appl. Surf. Sci., 2012, 259: 542
4 Li X B , Xu H X , Liu J T , et al . Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation [J]. Sep. Purif. Technol., 2016, 165: 101
5 Zheng Y M , Gao X F , Jiang L . Directional adhesion of superhydrophobic butterfly wings [J]. Soft Matter, 2007, 3: 178
6 Crick C R , Gibbins J A , Parkin I P . Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation [J]. J. Mater. Chem., 2013, 1A: 5943
7 Su X J , Li H Q , Lai X J , et al . Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil-water separation [J]. ACS Appl. Mater. Interfaces, 2017, 9: 3131
8 Tudu B K , Kumar A . Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions [J]. Prog. Org. Coat., 2019, 133: 316
9 Cao H J , Gu W H , Fu J Y , et al . Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation [J]. Appl. Surf. Sci., 2017, 419: 599
10 Liu Y , Zhang K T , Yao W G , et al . Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation [J]. ColloidsSurf., 2016,500A: 54
11 Wang Q , Yu M G , Chen G X , et al . Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation [J]. J. Mater. Sci., 2016, 52: 2549
12 Mi H Y , Li H , Jing X , et al . Robust superhydrophobicfluorinated fibrous silica sponge with fire retardancy for selective oil absorption in harsh environment [J]. Sep. Purif. Technol., 2020, 241: 116700
13 Jiang B , Chen Z X , Sun Y L , et al . Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method [J]. Appl. Surf. Sci., 2018, 441: 554
14 Lee H , Dellatore S M , Miller W M , et al . Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318: 426
15 Zhai C P , Sun F , Zhang P , et al . Interactions of dopamine and dopamine hydrochloride with ethanol [J]. J. Mol.Liq., 2016, 223: 420
16 Xu C L , Shan Y P , Bilal M , et al . Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding [J]. Chem. Eng. J., 2020, 395: 125093
17 Wang H X , Zhou H , Liu S , et al . Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings [J]. RSC Adv., 2017, 7: 33986
18 Yan X J , Zhu X W , Ruan Y T , et al . Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation [J]. Cellulose, 2020, 27: 7873
19 Zimmermann J , Seeger S , Reifler F A . Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces [J]. Text. Res. J., 2009, 79: 1565
20 Wenzel R N . Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
21 Wu Z K . Anti-galvanic reduction of thiolate-protected gold and silver nanoparticles [J]. Angew. Chem. Inti. Ed., 2012, 124: 2988
22 Cassie A B D , Baxter S . Wettability of porous surfaces [J]. Trans. FaradaySoc., 1944, 40: 546
23 Qian B T , Shen Z Q . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates [J]. Langmuir, 2005, 21: 9007
24 Yang S , Yin K , Wu J R , et al . Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation [J]. Nanoscale, 2019, 11: 17607
25 Li Y , Li L , Sun J Q . Bioinspired self-healing superhydrophobic coatings [J]. Angew. Chem. Int. Ed., 2010, 49: 6129
26 Wen G , Guo Z G , Liu W M . Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications [J]. Nanoscale, 2017, 9: 3338
27 Yang Y Y , Huang W , Guo Z P , et al . Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation [J]. Cellulose, 2019, 26: 9335-9348
28 Ou J F , Ma J , Wang F J , et al . Unexpected superhydrophobic polydopamine on cotton fabric [J]. Prog. Org. Coat., 2020, 147: 105777
29 Yao H J , Lu X , Xin Z , et al . A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation [J]. Sep. Purif. Technol.,2019, 229: 115792
30 Zheng L Z , Su X J , Lai X J , et al . Conductive superhydrophobic cotton fabrics via layer-by-layer assembly of carbon nanotubes for oil-water separation and human motion detection [J]. Mater. Lett., 2019, 253: 230
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[14] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.