Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 795-800    DOI: 10.11901/1005.3093.2020.445
  研究论文 本期目录 | 过刊浏览 |
疏水可拉伸碳纳米管/聚二甲基硅氧烷复合薄膜的性能
杨亚威, 常书龙, 上媛媛()
郑州大学物理学院 郑州 450052
Performance of Hydrophobic Stretchable Carbon Nanotubes/Polydimethylsiloxane Composite Films
YANG Yawei, CHANG Shulong, SHANG Yuanyuan()
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
引用本文:

杨亚威, 常书龙, 上媛媛. 疏水可拉伸碳纳米管/聚二甲基硅氧烷复合薄膜的性能[J]. 材料研究学报, 2021, 35(10): 795-800.
Yawei YANG, Shulong CHANG, Yuanyuan SHANG. Performance of Hydrophobic Stretchable Carbon Nanotubes/Polydimethylsiloxane Composite Films[J]. Chinese Journal of Materials Research, 2021, 35(10): 795-800.

全文: PDF(1844 KB)   HTML
摘要: 

基于化学气相沉积制备三维多孔多壁碳纳米管(MWNTs)海绵,在其内均匀填充聚二甲基硅氧烷(PDMS)制备出碳纳米管/聚二甲基硅氧烷复合薄膜。复合PDMS的碳纳米管海绵保持着自身的三维结构,成为导电网络和力学骨架;均匀填充的PDMS使复合薄膜具有较高的拉伸性能。碳纳米管与聚二甲基硅氧烷之间的协同作用,使MWNTs/PDMS复合薄膜具有良好的力学强度(3.7 MPa)、拉伸性(207%)和弹性。MWNTs/PDMS复合薄膜对应变有稳定可靠的响应,应变为10%、20%、50%、80%和100%时电阻变化率(△R/R0)分别为0.9%、1.4%、2.3%、3.5%和4.6%,灵敏因子(GF)为别为0.09、0.07、0.046、0.044和0.046。MWNTs/PDMS复合薄膜的性能具有良好的稳定性,不受拉伸速度和循环次数影响。同时,MWNTs/PDMS复合薄膜还保持了碳纳米管和PDMS的疏水能力。

关键词 材料表面与界面多壁碳纳米管海绵聚二甲基硅氧烷疏水性    
Abstract

Three-dimensional porous multi-wall carbon nanotubes (MWNTs) sponges were prepared by chemical vapor deposition, and then which were filled with polydimethylsiloxane (PDMS). Carbon nanotubes sponges still maintain the three-dimensional structure after filled with PDMS, which provided a conductive network and mechanical framework. The uniformly filled PDMS makes the composite film stretchable and elastic. The synergistic effect between carbon nanotubes and polydimethylsiloxane resulted in high mechanical strength (3.7 MPa), stretchability (207%) and superior elasticity of MWNTs/PDMS composite films. The MWNTs/PDMS film presents the resistance change (△R/R0) of 0.9%, 1.4%, 2.3%, 3.5% and 4.6%, and gage factor change (GF) of 0.09, 0.07, 0.046, 0.044 and 0.046 when subjected to strain of 10%, 20%, 50%, 80% and 100%, respectively. The sensing performance has a good stability which cannot be influenced by stretching speed and cycle numbers. In addition, the MWNTs/PDMS composite films inherited the hydrophobicity of MWNTs sponges and PDMS.

Key wordssurface and interface in the materials    multi-wall carbon nanotubes (MWNT) sponges    polydimethylsiloxane (PDMS)    strain sensor    hydrophobicity
收稿日期: 2020-10-26     
ZTFLH:  TP212.1  
基金资助:国家自然科学基金(51872267)
作者简介: 杨亚威,男,1993年生,博士
图1  制备MWNTs/PDMS复合薄膜的示意图
图2  MWNTs海绵和MWNTs/PDMS复合薄膜的扫描电镜照片
图3  MWNTs海绵、PDMS薄膜和MWNTs/PDMS复合薄膜在拉断过程中的应力应变曲线和MWNTs/PDMS复合薄膜应变为50%、100%和200%的循环应力应变曲线
图4  应变为10%、20%、50%、80%、100%条件下MWNTs/PDMS复合薄膜电阻的变化,应变为50%、拉伸速度分别为20 mm/min、40 mm/min、60 mm/min、80 mm/min和100 mm/min条件下MWNTs/PDMS复合薄膜电阻的变化以及MWNTs/PDMS复合薄膜应变为50%循环200圈电阻的变化
图5  MWNTs海绵、PDMS薄膜和MWNTs/PDMS复合薄膜的润湿角、MWNTs/PDMS复合薄膜浸泡液体及取出后的照片以及滴加人造汗液后MWNTs/PDMS复合薄膜电阻的变化
1 Gao W, Ota H, Kiriya D, et al. Flexible electronics toward wearable sensing [J]. Acc. Chem. Res., 2019, 52: 523
2 Liu H, Li Q M, Zhang S D, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review [J]. J. Mater. Chem., 2018, 6C: 12121
3 Jayathilaka W A D M, Qi K, Qin Y L, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors [J]. Adv. Mater., 2019, 31: 1805921
4 Lim H R, Kim H S, Qazi R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment [J]. Adv. Mater., 2020, 32: 1901924
5 Ding Y C, Xu T, Onyilagha O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6685
6 Miao P, Wang J, Zhang C C, et al. Graphene nanostructure-based tactile sensors for electronic skin applications [J]. Nano-Micro Lett., 2019, 11: 1
7 Wang C Y, Xia K L, Wang H M, et al. Advanced carbon for flexible and wearable electronics [J]. Adv. Mater., 2019, 31: 1801072
8 Chen S, Jiang K, Lou Z, et al. Recent developments in graphene-based tactile sensors and E-skins [J]. Adv. Mater. Technol., 2018, 3: 1700248
9 Kinloch I A, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: an outlook [J]. Science, 2018, 362: 547
10 Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection [J]. Nat. Nanotechnol., 2011, 6: 296
11 Park S, Vosguerichian M, Bao Z N. A review of fabrication and applications of carbon nanotube film-based flexible electronics [J]. Nanoscale, 2013, 5: 1727
12 Li Z, Qi X M, Xu L, et al. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring [J]. ACS Appl. Mater. Interfaces, 2020, 12: 42179
13 Sun H L, Dai K, Zhai W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 36052
14 Li L H, Bai Y Y, Li L L, et al. A superhydrophobic smart coating for flexible and wearable sensing electronics [J]. Adv. Mater., 2017, 29: 1702517
15 Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance [J]. Nat. Mater., 2018, 17: 355
16 Jing X S, Guo Z G. Biomimetic super durable and stable surfaces with superhydrophobicity [J]. J. Mater. Chem., 2018, 6A: 16731
17 Ghasemlou M, Daver F, Ivanova E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market [J]. J. Mater. Chem., 2019, 7A: 16643
18 Le T S D, An J N, Huang Y, et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors [J]. ACS Nano, 2019, 13: 13293
19 Hu P Y, Lyu J, Fu C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films [J]. ACS Nano, 2020, 14: 688
20 Gui X C, Wei J Q, Wang K L, et al. Carbon nanotube sponges [J]. Adv. Mater., 2010, 22: 617
21 Gui X C, Cao A Y, Wei J Q, et al. Soft, highly conductive nanotube sponges and composites with controlled compressibility [J]. ACS Nano, 2010, 4: 2320
22 Chen Y, Zhang H B, Yang Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding [J]. Adv. Funct. Mater., 2016, 26: 447
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.