Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 721-731    DOI: 10.11901/1005.3093.2021.004
  研究论文 本期目录 | 过刊浏览 |
多介质在碳钢腐蚀过程中的协同作用
张少华1, 李彦睿1, 卫英慧1,2(), 刘宝胜1, 侯利锋2, 杜华云2, 刘笑达2
1.太原科技大学材料科学与工程学院 太原 030024
2.太原理工大学材料科学与工程学院 太原 030024
Synergistic Effect of Multi-media on Carbon Steel Corrosion
ZHANG Shaohua1, LI Yanrui1, WEI Yinghui1,2(), LIU Baosheng1, HOU Lifeng2, DU Huayun2, LIU Xiaoda2
1.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

张少华, 李彦睿, 卫英慧, 刘宝胜, 侯利锋, 杜华云, 刘笑达. 多介质在碳钢腐蚀过程中的协同作用[J]. 材料研究学报, 2021, 35(10): 721-731.
Shaohua ZHANG, Yanrui LI, Yinghui WEI, Baosheng LIU, Lifeng HOU, Huayun DU, Xiaoda LIU. Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. Chinese Journal of Materials Research, 2021, 35(10): 721-731.

全文: PDF(21679 KB)   HTML
摘要: 

采用电化学方法(电化学阻抗和动电位极化)并配合浸泡失重法以及一系列表征,研究了常温下碳钢基体与CO2-Cl-的界面反应,以及加入HCO3-介质后CO2-Cl--HCO3-体系中HCO3-介质对碳钢表面的成膜。结果表明,CO2介质的加入使碳钢基体的溶解速率显著提高但是对Cl-浓度的影响较小;添加高浓度的Cl-反而抑制CO2的溶解而使基体的腐蚀速率略微降低;在CO2+Cl-+HCO3-体系中加入微量的HCO3-后碳钢表面成膜不明显,疏松的腐蚀产物不能抑制碳钢基体的进一步溶解;浓度过高的HCO3-使FeCO3的过饱和度提高从而加速细小晶体的析出,抑制腐蚀的进行。

关键词 金属材料多介质协同作用电化学技术腐蚀机理    
Abstract

The interfacial reaction between carbon steel and CO2-Cl-, along with the effect of HCO3- on the formation of corrosion products scale on the steel in the solution of CO2-Cl--HCO3- at room temperature were investigated via electrochemical impedance spectroscopy and potentiodynamic polarization measurement. The results show that the addition of CO2 significantly increases the dissolution rate of carbon steel, whereas affects the Cl-concentration little and that, the addition of Cl- with high concentration can inhibit the dissolution of CO2, leading to a slight decrease in the corrosion rate of carbon steel. The formation of corrosion products film on the surface of carbon steel is not obvious after adding a small amount of HCO3- in the solution, correspondingly the formation of loose corrosion products cannot inhibit the further dissolution of carbon steel; However, excessive HCO3- addition may accelerate the precipitation of fine crystallites by increasing the supersaturation of FeCO3, and thus inhibiting the corrosion process.

Key wordsmetallic materials    synergistic effect of multi-media    electrochemical techniques    corrosion mechanism
收稿日期: 2021-01-12     
ZTFLH:  TE988  
基金资助:国家自然科学基金(52071227);中央引导地方科技发展专项(YDZX20181400002967);山西省科技重大专项(20191102004);山西省重点研发计划(201805D121003)
作者简介: 张少华,男,1992年生,博士
CSiMnSPCrNiCuFe
0.220.2520.4520.00810.01220.02930.03610.1331Bal.
表1  实验用20碳钢的化学成分
图1  20碳钢的显微组织和区域A/B的EDS结果
图2  浸泡实验系统
图3  碳钢在25℃的0.2/1.0 mol/L Cl-和0.2/1.0 mol/L Cl-+CO2(1 bar)溶液体系中的动电位极化曲线、Nyquist图和相应的等效电路
图4  碳钢在Cl-和Cl-+CO2 (1 bar) 溶液体系中的动电位极化曲线拟合结果以及相应的腐蚀电流密度和腐蚀速率
Components0.2 mol/L Cl-1.0 mol/L Cl-0.2 mol/L Cl-+CO21.0 mol/L Cl-+CO2
Rs/Ω·cm211.906.80412.297.434
Qdl/10-4 F·cm-21.9101.8434.1753.054
ndl0.71850.73970.67900.7539
Rct/Ω·cm251876187566.8608.4
RL/Ω·cm2--16092145
L/H·cm-2--12602513
表2  碳钢在0.2/1.0 mol/L Cl-和0.2/1.0 mol/L Cl-+CO2(1 bar)溶液体系中电化学阻抗谱的拟合参数
图5  碳钢在25℃的0.2/1.0 mol/L Cl-和0.2/1.0 mol/L Cl-+CO2(1 bar)溶液体系中浸泡24 h后的表面形貌以及EDS/XRD结果
图6  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-溶液体系中的动电位极化曲线和阻抗图
[HCO3-]/mol·L-1Ecorr (V vs. SCE)Epass (V vs. SCE)Icorr /10-6 A·cm-2βa (V/dec)βc (V/dec)
0-0.7395-173.875182.5472.7
0.05-0.7457-164.961213.6366.1
0.1-0.75700.8716135.364219.8275.9
0.5-0.7825-0.1264103.323163.2151.6
表3  碳钢在CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-溶液体系中所得动电位极化曲线的拟合参数值
Components0 mol·L-10.05 mol·L-10.1 mol·L-10.5 mol·L-1
Rs/Ω·cm214.7712.757.7155.83
CPEdl/10-4 F·cm-23.533.7294.9724.401
ndl0.84420.79020.74720.7542
Rct/Ω·cm2136.2196.3280.9373.4
表4  碳钢在CO2(1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-溶液体系中的电化学阻抗谱拟合参数
图7  碳钢在60℃的CO2(1 bar)+0.1 mol/L Cl-+0、0.05、0.1和0.5 mol/L HCO3-溶液体系中的循环伏安曲线
图8  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0、0.05、0.1和0.5 mol/L HCO3-溶液体系中极化到1.25 V vs. SCE的SEM形貌
图9  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0、0.05、0.1和0.5 mol/L HCO3-溶液体系中浸泡24 h后的表面SEM照片
图10  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0、0.05、0.1和0.5 mol/L HCO3-溶液体系中浸泡24 h后的横截面SEM照片
图11  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0.05/0.5 mol/L HCO3-溶液体系中浸泡24 h后腐蚀产物的XRD谱
图12  碳钢在60℃的CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-溶液体系中浸泡24 h后的Nyquist曲线
1 Zhao J H, Wang X Q, Kang J, et al. Crack propagation behavior during DWTT for X80 pipeline steel processed via ultra-fast cooling technique [J]. Chin. J. Mater. Res., 2017, 31(10): 728
1 赵金华, 王学强, 康 健等. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为 [J]. 材料研究学报, 2017, 31(10): 728
2 Han X, Yu S, Li H, et al. Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel [J]. Chin. J. Mater. Res., 2017, 31(9): 672
2 韩祥祥, 于思荣, 李好等. X90管线钢表面CuO超疏水涂层的制备和性能 [J]. 材料研究学报, 2017, 31(9): 672
3 Sun J, Zhang G, Liu W, et al. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution [J]. Corros. Sci., 2012, 57: 131
4 Zhang G A, Lu M X, Wu Y S. Morphology and microstructure of CO2 corrosion scales [J]. Chin. J. Mater. Res., 2005, 19(5): 537
4 张国安, 路民旭, 吴荫顺. CO2腐蚀产物膜的微观形貌和结构特征 [J]. 材料研究学报, 2005, 19(5): 537
5 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49(12): 4308
6 Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52(4): 280
7 Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behaviour of a novel Al-containing low Cr steel in a simulated oilfield formation water [J]. Chin. J. Mater. Res., 2020, 34(6): 443
7 朱金阳, 谭成通, 暴飞虎等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为 [J]. 材料研究学报, 2020, 34(6): 443
8 Han J, Nešić S, Yang Y. Spontaneous passivation observations during scale formation on mild steel in CO2 brines [J]. Electrochim. Acta, 2011, 56(15): 5396
9 Zhang S, Hou L, Du H, et al. A study on the interaction between chloride ions and CO2 towards carbonsteel corrosion [J]. Corros. Sci., 2020, 167: 108531
10 Xu L, Xiao H, Shang W, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
11 Liu Z, Gao X, Li J, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
12 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
13 Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41(1): 117
14 Remita E, Tribollet B, Sutter E, et al. Hydrogen evolution in aqueous solutions containing dissolved CO2: quantitative contribution of the buffering effect [J]. Corros. Sci., 2008, 50(5): 1433
15 Almeida T D C, Bandeira M C E, Moreira R M. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
16 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
17 Ashley G W, Burstein G T. Initial stages of the anodic oxidation of iron in chloride solutions [J]. Corrosion, 1991, 47(12): 908
18 Darwish N A, Hilbert F, Lorenz W J, et al. The influence of chloride ions on the kinetics of iron dissolution [J]. Electrochim. Acta, 1973, 18(6): 421
19 Barcia O E, Mattos O R. The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements [J]. Electrochim. Acta, 1990, 35(6): 1003
20 Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50(9): 651
21 Zhang G, Lu M, Chai C, et al. Effect of HCO3- concentration on CO2 corrosion in oil and gas fields [J]. Int. J. Min. Met. Mater., 2006, 13(1): 44
22 Wright R F, Brand E R, Ziomek-Moroz M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines [J]. Electrochim. Acta, 2018, 290: 626
23 Onyejia L, Mohammed S, Kale G. Electrochemical response of micro-alloyed steel under potentiostatic polarization in CO2 saturated brine [J]. Corros. Sci., 2018, 138: 146
24 Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int. J. Ind. Chem., 2013, 4(1): 35
25 Heuer J K, Stubbins J F. An XPS characteristic of FeCO3 films from CO2 corrosion [J]. Corros. Sci., 1999, 41(7): 1231
26 Zhang D L, Wei E Z, Jing H, et al. Construction of super-hydrophobic structure on surface of super ferritic stainless steel B44660 and its corrosion resistance [J]. Chin. J. Mater. Res., 2021, 35(1): 7
26 张大磊, 魏恩泽, 荆赫等. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能 [J]. 材料研究学报, 2021, 35(1): 7
27 Davies D H, Burstein G T. The effect of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36(8): 416
28 Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59(8): 659
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.