|
|
多介质在碳钢腐蚀过程中的协同作用 |
张少华1, 李彦睿1, 卫英慧1,2( ), 刘宝胜1, 侯利锋2, 杜华云2, 刘笑达2 |
1.太原科技大学材料科学与工程学院 太原 030024 2.太原理工大学材料科学与工程学院 太原 030024 |
|
Synergistic Effect of Multi-media on Carbon Steel Corrosion |
ZHANG Shaohua1, LI Yanrui1, WEI Yinghui1,2( ), LIU Baosheng1, HOU Lifeng2, DU Huayun2, LIU Xiaoda2 |
1.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
张少华, 李彦睿, 卫英慧, 刘宝胜, 侯利锋, 杜华云, 刘笑达. 多介质在碳钢腐蚀过程中的协同作用[J]. 材料研究学报, 2021, 35(10): 721-731.
Shaohua ZHANG,
Yanrui LI,
Yinghui WEI,
Baosheng LIU,
Lifeng HOU,
Huayun DU,
Xiaoda LIU.
Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. Chinese Journal of Materials Research, 2021, 35(10): 721-731.
1 |
Zhao J H, Wang X Q, Kang J, et al. Crack propagation behavior during DWTT for X80 pipeline steel processed via ultra-fast cooling technique [J]. Chin. J. Mater. Res., 2017, 31(10): 728
|
1 |
赵金华, 王学强, 康 健等. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为 [J]. 材料研究学报, 2017, 31(10): 728
|
2 |
Han X, Yu S, Li H, et al. Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel [J]. Chin. J. Mater. Res., 2017, 31(9): 672
|
2 |
韩祥祥, 于思荣, 李好等. X90管线钢表面CuO超疏水涂层的制备和性能 [J]. 材料研究学报, 2017, 31(9): 672
|
3 |
Sun J, Zhang G, Liu W, et al. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution [J]. Corros. Sci., 2012, 57: 131
|
4 |
Zhang G A, Lu M X, Wu Y S. Morphology and microstructure of CO2 corrosion scales [J]. Chin. J. Mater. Res., 2005, 19(5): 537
|
4 |
张国安, 路民旭, 吴荫顺. CO2腐蚀产物膜的微观形貌和结构特征 [J]. 材料研究学报, 2005, 19(5): 537
|
5 |
Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49(12): 4308
|
6 |
Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52(4): 280
|
7 |
Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behaviour of a novel Al-containing low Cr steel in a simulated oilfield formation water [J]. Chin. J. Mater. Res., 2020, 34(6): 443
|
7 |
朱金阳, 谭成通, 暴飞虎等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为 [J]. 材料研究学报, 2020, 34(6): 443
|
8 |
Han J, Nešić S, Yang Y. Spontaneous passivation observations during scale formation on mild steel in CO2 brines [J]. Electrochim. Acta, 2011, 56(15): 5396
|
9 |
Zhang S, Hou L, Du H, et al. A study on the interaction between chloride ions and CO2 towards carbonsteel corrosion [J]. Corros. Sci., 2020, 167: 108531
|
10 |
Xu L, Xiao H, Shang W, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
|
11 |
Liu Z, Gao X, Li J, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
|
12 |
Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
|
13 |
Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41(1): 117
|
14 |
Remita E, Tribollet B, Sutter E, et al. Hydrogen evolution in aqueous solutions containing dissolved CO2: quantitative contribution of the buffering effect [J]. Corros. Sci., 2008, 50(5): 1433
|
15 |
Almeida T D C, Bandeira M C E, Moreira R M. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
|
16 |
Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
|
17 |
Ashley G W, Burstein G T. Initial stages of the anodic oxidation of iron in chloride solutions [J]. Corrosion, 1991, 47(12): 908
|
18 |
Darwish N A, Hilbert F, Lorenz W J, et al. The influence of chloride ions on the kinetics of iron dissolution [J]. Electrochim. Acta, 1973, 18(6): 421
|
19 |
Barcia O E, Mattos O R. The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements [J]. Electrochim. Acta, 1990, 35(6): 1003
|
20 |
Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50(9): 651
|
21 |
Zhang G, Lu M, Chai C, et al. Effect of HCO3- concentration on CO2 corrosion in oil and gas fields [J]. Int. J. Min. Met. Mater., 2006, 13(1): 44
|
22 |
Wright R F, Brand E R, Ziomek-Moroz M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines [J]. Electrochim. Acta, 2018, 290: 626
|
23 |
Onyejia L, Mohammed S, Kale G. Electrochemical response of micro-alloyed steel under potentiostatic polarization in CO2 saturated brine [J]. Corros. Sci., 2018, 138: 146
|
24 |
Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int. J. Ind. Chem., 2013, 4(1): 35
|
25 |
Heuer J K, Stubbins J F. An XPS characteristic of FeCO3 films from CO2 corrosion [J]. Corros. Sci., 1999, 41(7): 1231
|
26 |
Zhang D L, Wei E Z, Jing H, et al. Construction of super-hydrophobic structure on surface of super ferritic stainless steel B44660 and its corrosion resistance [J]. Chin. J. Mater. Res., 2021, 35(1): 7
|
26 |
张大磊, 魏恩泽, 荆赫等. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能 [J]. 材料研究学报, 2021, 35(1): 7
|
27 |
Davies D H, Burstein G T. The effect of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36(8): 416
|
28 |
Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59(8): 659
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|