Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 410-416    DOI: 10.11901/1005.3093.2019.552
  研究论文 本期目录 | 过刊浏览 |
2101节镍双相不锈钢立式连铸板坯的组织转变
白亮1,2(), 汲琨1,2, 刘景顺1,2, 刘军1,2, 董俊慧1,2, 楠顶1,2
1.内蒙古工业大学材料科学与工程学院 呼和浩特 010051
2.内蒙古自治区石墨(烯)储能与涂料重点实验室 呼和浩特 010051
Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab
BAI Liang1,2(), JI Kun1,2, LIU Jingshun1,2, LIU Jun1,2, DONG Junhui1,2, NAN Ding1,2
1.Inner Mongolia University of Technology, Huhhot 010051, China
2.Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, Huhhot 010051, China
引用本文:

白亮, 汲琨, 刘景顺, 刘军, 董俊慧, 楠顶. 2101节镍双相不锈钢立式连铸板坯的组织转变[J]. 材料研究学报, 2020, 34(6): 410-416.
Liang BAI, Kun JI, Jingshun LIU, Jun LIU, Junhui DONG, Ding NAN. Microstructure Transformation Process of Lean Duplex Stainless Steel 2101 in Vertical Continuous Casting Slab[J]. Chinese Journal of Materials Research, 2020, 34(6): 410-416.

全文: PDF(7069 KB)   HTML
摘要: 

分析了2101双相不锈钢实际铸坯的宏观晶粒分布和微观组织转变。结果表明,2101双相不锈钢的柱状晶向等轴晶转变(CET转变)发生在二冷2区末端距铸坯表面25 mm处。在此区域内适当降低铸坯表面冷却强度有助于减小坯壳内部温度梯度促进CET转变,提高铸坯的等轴晶率和扩大角部的等轴晶区域;对微观组织的分析发现,在二冷6区之后提高冷却强度可调整铸坯中心形成的奥氏体形态,有利于晶内及晶界处奥氏体细化和减小晶界处针状奥氏体组织的数量和尺寸,从而在一定程度上提高铸坯的热变形能力。

关键词 金属材料铸坯组织实验研究2101双相不锈钢转变过程    
Abstract

The macro grain size distribution and microstructure change of the slab of Lean duplex stainless steel 2101 was investigated. It was concluded that columnar equiaxed crystal transformation (CET) occurred in the location, where is at the end of section No.2 of the secondary cooling zone with 25 mm from the slab surface. Decreasing the slab surface cooling strength in this zone will reduce internal temperature gradient in the shell, and promote CET transition, improve the rate of equiaxial crystal and expand the equiaxial zone at the corner. The results of microstructure analysis show that behind the section No. 6 in secondary cooling zone the morphology of austenite formed in the core of the billet can be adjusted by increasing the cooling intensity, which is also beneficial to the refinement of austenite morphology in the grain and at the grain boundary. Size of the acicular austenite structure at the grain boundary can be reduced, so as to improve the heat deformation ability of the billet.

Key wordsMetallic materials    Microstructure of slab    Experimental study    2101 duplex stainless steel    Transformation process
收稿日期: 2019-11-26     
ZTFLH:  TG142.1+1  
基金资助:国家自然科学基金(51474143);内蒙古自治区高等学校科学研究项目(NJZY19071);内蒙古自然科学基金(2015BS0510);内蒙古工业大学材料学重点学科团队(ZD202012)
作者简介: 白亮,男,1984年生,博士
图1  工厂用连铸机的示意图
LocationMoldFoot rollerNo.1No.2No.3No.4No.5No.6No.7
Length/mBroadNarrowBroadNarrow0.631.261.482.422.442.392.04
0.70.70.30.7
Cooling water/L·m-2·s-127502508.394.633.162.00.950.640.390.290.16
表1  铸机冷却水量信息表
CSiMnCrNiCuMoBNAl
0.0250.655.1521.41.420.30.220.0010.2050.003
表2  2101双相不锈钢化学成分 (质量分数,%)
图 2  铸坯试样的切样方向和位置
图3  连铸坯的组织
图4  铸坯组织的放大图
图5  铸坯的温度场和厚度变化Zone
图6  铸坯的宽面和窄面微观组织的对比
图7  柱状晶竞争生长与终止生长
[1] Ornek C, Engelberg D L. Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel [J]. Mat. Sci. Eng. A-struct, 2016, 666: 269
doi: 10.1016/j.msea.2016.04.062
[2] Nilsson J O. Super Duplex Stainless Steels [J]. Mater. Sci. Tech., 1992, 8(8): 685
doi: 10.1179/mst.1992.8.8.685
[3] Singhal L K, Poojary P T, Kumar A. Comparative Evaluation of Low Nickel and Nickel Free Lean Duplex Stainless Steels with 316L in a Variety of Corrosive Media [J]. T. Indian I. Metals., 2013, 66(1): 25
doi: 10.1007/s12666-012-0164-3
[4] Iza-Mendia A, Pinol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall Mater. Trans. A, 1998, 29 (12): 2975
doi: 10.1007/s11661-998-0205-z
[5] Atamert S, King J E. Super Duplex Stainless Steels 1. Heat Affected Zone Microstructures [J]. Mater. Sci. Tech., 1992, 8(10): 896
doi: 10.1179/mst.1992.8.10.896
[6] Wang J, Uggowitzer P J, Magdowski R, et al. Nickel-free duplex stainless steels [J]. Scripta Materialia, 1998, 40 (1): 123
doi: 10.1016/S1359-6462(98)00396-0
[7] Toor I H, Hyun P J, Kwon H S. Development of high Mn-N duplex stainless steel for automobile structural components [J]. Corrosion Sci., 2008, 50(2): 404
doi: 10.1016/j.corsci.2007.07.004
[8] Park J Y, Ahn Y S. Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel [J]. Acta. Metall. Sin., 2015, 28(1): 32
doi: 10.1007/s40195-014-0162-z
[9] Lilias M, Johansson P, Liu H P, et al. Development of a lean duplex stainless steel [J]. Steel. Res. Int., 2008, 79(6): 466
doi: 10.1002/srin.2008.79.issue-6
[10] Bassani P, Breda M, Brunelli K, et al. Characterization of a Cold-Rolled 2101 Lean Duplex Stainless Steel [J]. Microsc. Microanal., 2013, 19(4): 988
doi: 10.1017/S1431927613001426
[11] Liu Y, Yan H, Wang X, et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101 [J]. Mat. Sci. Eng. A-struct, 2013, 575: 41
doi: 10.1016/j.msea.2013.03.036
[12] Gao Z J, Li J Y, Feng Z H, et al. Influence of hot rolling on the microstructure of lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2019, 26(10): 1266
doi: 10.1007/s12613-019-1841-6
[13] Feng Z H, Li J Y, Wang Y D. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101 [J]. Int. J. Min. Met. Mater., 2016, 23(4): 425
doi: 10.1007/s12613-016-1252-x
[14] Patra S, Ghosh A, Singhal L K, et al. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture [J]. Metall Mater. Trans. A, 2017, 48A1): 294
[15] Maetz J Y, Cazottes S, Verdu C, et al. Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging [J]. Microsc. Microanal., 2016, 22(2): 463
doi: 10.1017/S1431927616000167 pmid: 26940550
[16] Maetz J Y, Cazottes S, Verdu C, et al. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging [J]. Metall Mater. Trans. A, 2016, 47A(1): 239
[17] Zhang L, Zhang W, Jiang Y, et al. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101 [J]. Electrochim. Acta, 2009, 54(23): 5387
doi: 10.1016/j.electacta.2009.04.023
[18] He L, Jiang Y, Guo Y, et al. Electrochemical noise analysis of duplex stainless steel 2101 exposed to different corrosive solutions [J]. Corros. Eng. Sci. Techn., 2016, 51(3): 187
doi: 10.1179/1743278215Y.0000000048
[19] Hu Y, Li Y, He Y, et al. Effects of Micro-Sized Ferrite and Austenite Grains on the Pitting Corrosion Behavior of Lean Duplex Stainless Steel 2101 [J]. Metals, 2017, 7(5): 168
doi: 10.3390/met7050168
[20] Bai L. The research of microstructure and thermal stress in 2101 duplex stainless steel of the continuous catsing slab [D]. Shanghai: Shanghai University, 2016.
[20] (白亮. 2101双相不锈钢连铸凝固过程组织与热应力研究[D]. 上海: 上海大学, 2016)
[21] Ameri A A H, Escobedo D J P, Ashraf M, et al. Investigating the Anisotropic Behaviour of Lean Duplex Stainless Steel 2101 [A]. Characterization of Minerals, Metals, and Materials 2017 [C]. San Diego: TMS Annual Meeting and Exhibition, 2017: 181
[22] Hu Y, Shi Y, Shen X, et al. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multipass 2101 Duplex Stainless Steel Welding Joints [J]. Metall Mater. Trans. A, 2018, 49A(8): 3306
[23] Yin H, Emi T, Shibata H. Morphological instability of delta-ferrite/gamma-austenite interphase boundary in low carbon steels [J]. Acta Mater., 1999, 47(5): 1523
doi: 10.1016/S1359-6454(99)00022-1
[24] Zhou L L, Lin D W, Zhou C D, et al. In-situ observation of Delta/Gamma phase change process of duplex stainless steel at different cooling rates [J]. Shanghai Metal, 2007, 29(03): 19
[24] (周磊磊, 林大为, 周灿栋等. 不同冷却速度下双相不锈钢δ/γ相变过程的原位观察 [J]. 上海金属, 2007, 29(03): 19)
[25] Maki T, Furuhara T, Tsuzaki K. Microstructure development by thermomechanical processing in duplex stainless steel [J]. ISIJ INT., 2001, 41(6): 571
doi: 10.2355/isijinternational.41.571
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.