Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 801-810    DOI: 10.11901/1005.3093.2020.109
  研究论文 本期目录 | 过刊浏览 |
含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势
周海涛(), 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸
上海航天精密机械研究所 上海 201600
Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements
ZHOU Haitao(), WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
引用本文:

周海涛, 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸. 含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势[J]. 材料研究学报, 2020, 34(11): 801-810.
Haitao ZHOU, Yanbo WANG, Lu XIAO, Jingli SUN, Yuling XU, Ge CHEN. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. Chinese Journal of Materials Research, 2020, 34(11): 801-810.

全文: PDF(9769 KB)   HTML
摘要: 

镁基复合材料具有极强的设计性,有望满足航空航天、军工产品制造以及电子封装等领域对低密度、高强度和高刚度材料的需求。但是,现在镁基复合材料的性能还有许多问题需要解决,最突出的是增强体的均匀分散和界面问题。本文综述了镁基复合材料的组成及其各自的作用,分析了制约高性能镁基复合材料的增强体分散和界面优化以及目前镁基复合材料力学性能的局限性,展望了镁基复合材料的设计新思路和发展趋势。

关键词 评述复合材料镁基增强体分散界面性能    
Abstract

Magnesium matrix composites with extremely strong design flexibility in properties are expected to meet the needs of low-density, high-strength and high stiffness materials in fields such as aerospace, military, and electronic packaging etc. However, there are still many problems needed to be solved for the application, especially the uniform dispersibility of reinforcements and the interface of reinforcement/matrix. In this article, the composition of magnesium matrix composites and the respective functions were introduced firstly. Then, the dispersion technology for reinforcements and the optimization technology for the interface of reinforcement/substrate were also discussed in detail. At last, the new ideas and developing trends were forecasted especially in terms of the limitations of mechanical properties for the magnesium matrix composites at the present.

Key wordsreview    composite    magnesium matrix    reinforcement    dispersion    interface    properties
收稿日期: 2020-04-13     
ZTFLH:  TB331  
基金资助:装备预研航天科技联合基金(6141B061304);国家自然科学基金(U2037601);航天八院自主研发项目(ZY2019-58)
作者简介: 周海涛,男,1988年生,博士
图1  用粉末冶金法制备镁基复合材料的示意图[14]
图2  石墨烯增强镁基复合材料过程的示意图[28]
图3  SiC纳米颗粒增强镁基复合材料的显微组织[29]
图4  涂层对Cf/Mg复合材料界面的影响[38]
图5  CNTs包覆MgO和AZ91-MgO@CNTs复合材料界面结合的示意图[42]
MaterialsUTS/MPaYS/MPaElongation/%
AT81/0.5%(vol.%)SiCp[18]393255
AZ31/1%(vol.%)SiCp[47]2178111.5
AZ31/10%(micro)+4%(submicro+1%(nano)(vol.%)SiCp[48]3783052.3
AZ31/12%(micro)+2%(submicro)+1%(nano)(vol.%)SiCp[48]3562802.8
AZ31/3%(wt.%)GNPs[49]299±6.2195±4.512.5±4.3
ZK60/0.05%(wt.%)GNPs[50]336±4256±413±1.2
ZK60/0.1%(wt.%)GNPs[50]343±3.8383±3.517±2.0
AZ31/3%(wt.%)GNPs[16]335±6.6232±4.910.7±2.1
AZ91/0.1%(wt.%)GO[51]283±5.5232±4.08.7±0.1
AZ91/0.5%(wt.%)GO[51]355±4.5312±4.511.3±0.2
AZ31/0.1%(vol.%)CNTs[53]32227016
AZ91D/0.5%(vol.%)CNTs[54]357±9266±413.1
AZ91D/1%(vol.%)CNTs[54]389±8278±812.8
AZ91D/3%(wt.%)CNTs[42]301±4.5250±3.89.4±0.1
AZ91D/3%(wt.%)MgO@CNTs[42]331±5.0284±4.68.6±0.1
表1  常用含碳增强体增强镁基复合材料的力学性能
图6  ZW31/+AZ91/SiCp层压板的制备工艺流程[63]
图7  多相混杂增强示意图
图8  新型镁-镍钛仿生复合材料的制备工艺及其三维互穿仿生结构[66]
1 Song J F, She J, Chen D L, et al. Review latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magn. Alloys., 2020, 8(1): 1
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magn. Alloys., 2019, 7(3): 536
3 Alaneme K K, Okotete E A. Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments [J]. J. Magn. Alloys., 2017, 5(4): 460
4 Wang X J, Hu X S, Liu W Q, et al. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites [J]. Mater. Sci. Eng. A., 2017, 682: 491
5 Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. J. Magn. Alloys., 2017, 5(2): 189
6 You S H, Huang Y D, Ulrich K K, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloys., 2017, 5(3): 239
7 Feng Y, Chen C, Peng C Q, et al. Research progress of magnesium-based composites [J]. Chin. J. Nonferrous. Met., 2017, 27(12): 2385
7 冯艳, 陈超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27(12): 2385
8 He Y, Yuan Q H, Luo L, et al. Current Study and Novel Ideas on Magnesium Matrix Composites [J]. J. aeronaut. Mater., 2018, 38(4): 26
8 何阳, 袁秋红, 罗岚等. 镁基复合材料研究进展及新思路 [J]. 航空材料学报, 2018, 38(4): 26
9 Shen K, Zhang Q, Huang ZH, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites [J]. Compos. Part A., 2014, 56(1): 44
10 Xiang SL, Wang XJ, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
11 Xiang SL, Gupta M, Wang XJ, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Compos. Part. A., 2017, 100: 183
12 Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon., 2018, 139: 954
13 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng. A., 2001, 298: 193
14 Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloys Compd., 2020, 821: 153379
15 Rashad M, Pan F S, Zhang J Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy [J]. J. Alloys Compd., 2015, 646: 223
16 Rashad M, Pan F S, Lin D, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets [J]. Mater. Des., 2016, 89: 1242
17 Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
18 Li C P, Wang Z G, Zha M, et al. Effect of pre-oxidation treatment of nano-SiC particulates on microstructure and mechanical properties of SiC/Mg-8Al-1Sn composites fabricated by powder metallurgy combined with hot extrusion [J]. Materials., 2016, 9: 964
19 Rashad M, Pan F S, Asif M, et al. Powder metallurgy of Mg-1Al-1Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20: 4250
20 Muley S V, Singh S P, Sinha P, et al. Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior [J]. Mater. Des., 2014, 53: 475
21 Wang X J, Wu K, Huang W X, et al. Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM [J]. Compos. Sci. Technol., 2007, 67: 2253
22 Shen M J, Wang X J, Zhang M F, et al. Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites [J]. Mater. Sci. Eng. A., 2014, 601: 58
23 Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
24 Qiu X. Microstructure and Mechannical Properties of SiCp/AZ91 Magnesium Matrix Composites Fabricated By Squeeze Casting [D]. Harbin: Harbin Institute of Technology, 2006
24 邱鑫. 挤压铸造SiCp/AZ91镁基复合材料的显微结构与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2006
25 Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2017
25 张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
26 Wu G H, Song M H, Xiu Z Y, et al. Microstructure and Properties of M40 Carbon Fibre Reinforced Mg-Re-Zr Alloy Composites. J. Mater. Sci. Technol. [J]. J. Mater. Sci. Technol., 2009, 25 (03): 423426
27 Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites [J]. Mater. Sci. Eng. A., 2018, A711: 633
28 Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng. A., 2014, A597: 264
29 Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature., 2015, 528(7583): 539
30 Liu G J, Li W F, Du J. Investigation on wettability of Al-Mg metal matrix composites [J]. Foundry., 2006, 55(9): 911
30 刘贯军, 李文芳, 杜军. 铝、镁基复合材料的润湿性探究 [J]. 铸造, 2006, 55(9): 911
31 Wang T, Huang X F, Liang Y, et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite [J]. Hot. Work. Technol., 2008, 37(20): 98
31 王韬, 黄晓锋, 梁艳等. 颗粒增强镁基复合材料的增强复合新思路 [J]. 热加工工艺, 2008, 37(20): 98
32 Russell-Stevens M, Todd R, Papakyriacou M. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite [J]. Surf. Interface Anal., 2005, 37(3): 336
33 Viaia J C, Claveyrolas G, Bosselet F. The chemical behaviour of carbon fibres in magnesium base Mg-Al alloys [J]. J. Mater. Sci., 2000, 35(7): 1813
34 Feldhoff A, Pippel E, Woltersdorf J. et al. Interface engineering of carbon-fiber reinforced Mg-Al alloys [J]. Adv. Eng. Mater, 2000, 2(8): 471
35 Bouix J, Berthet M P, Bosselet F, et al. Physico-chemistry of interfaces in inorganic-matrix composites [J]. Compos. Sci. Technol., 2001, 61(3): 355
36 Dan Z, Ping S, Shi L, et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates [J]. Appl. Surf. Sci., 2010, 256(23): 7043
37 Wu F, Zhu J, Chen Y, et al. The effects of processing on the microstrues and properties of Gr/Mg composites [J]. Mater. Sci. Eng. A., 2000, 277(1-2): 143
38 Xia C J. Interface tailoring in coated carbon fiber reinforced magnesium alloy composites [D]. Shanghai: Shanghai Jiao Tong University, 2013
38 夏存娟. 涂层碳纤维镁基复合材料的界面控制 [D]. 上海: 上海交通大学, 2013
39 Contreras A, Leonb C A, Drew R A L, et al. Wettability and spreading kinetics of Al and Mg on TiC [J]. Scr. Mater., 2003, 48(12): 1625
40 Uozumi H, Kobayashi K, Nakanishi K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Mater. Sci. Eng. A., 2008, 495(1-2): 282
41 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon., 2016, 96: 843
42 Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
43 Reischer E, Pippel J, Woltersdorf G, et al. Carbon fibre-reinforced magnesium: Improvement of bending strength by nanodesign of boron nitride interlayers [J]. Mater. Chem. Phys., 2007, 104(1): 83-87
44 Korner C, Schaff W, Ottmuller M, et al. Carbon long fiber reinforced magnesium alloys [J]. Adv. Eng. Mater., 2000, 2 (6): 327
45 Nai M H, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites [J]. Mater. Des., 2014, 60(8): 490
46 Lu P, Xia C J, Wang H W, et al. Study on zinc-coated Cf /Mg composite [J]. Hot. Work. Technol., 2009, 38(10): 122
46 鲁鹏, 夏存娟, 王浩伟等. Zn涂层碳纤维增强镁基复合材料的研究 [J]. 热加工工艺, 2009, 38(10): 122
47 Wang X, Liu W, Hu X, et al. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling [J]. Mater. Sci. Eng. A., 2018, 715: 49
48 Shen M J, Wang X J. Ying T,et al. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles [J]. J. Alloys. Compd., 2016, 686: 831
49 Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method [J]. J. Magn. Alloys., 2016, 4(4): 270
50 Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composties [J]. Mater. Sci. Eng. A., 2018, 711: 633
51 Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
52 Han G, Wang Z, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng. A., 2015, 628: 350
53 Liang J, Li H, Qi L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728
54 Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
55 Song M H, Wu G H, Chen G Q, et al. Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M40/AZ91D composites [J]. Trans. Nonferrous Met. Soc. China., 2010, 20(1): 47
56 Song M H, Wu G H, Yang W S, et al. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method [J]. J. Mater. Sci. Technol., 2010, 26(10): 931
57 Wang X J, Xiang Y Y, Hu X S. et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta. Metall. Sin., 2019, 55(1): 73
57 王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55(1): 73
58 Jiang B. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
58 蒋博. Cf/Mg复合材料制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
59 Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
59 张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
60 Sankaranarayanan S, Jayalakshmi S, Gupta M. Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite [J]. J. Magn. Alloys., 2014, 2(1): 13
61 Hassan S F, Gupta M. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement [J]. J. Mater. Sci., 2002, 37(12): 2467
62 Wang W L, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67(7/8): 1541
63 Zhang X C, Wang C J, Deng K K, et al. Fabrication, microstructure and mechanical properties of the as-rolled ZW31/PMMCs laminate [J]. Mater. Sci. Eng. A., 2019, 761: 138043
64 Yuan Q H. Preparation and mechanical properties of AZ91 alloy composite reinforced with nano-carbon materials [D]. Nanchang: Nanchang University, 2016
64 袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究 [D]. 南昌: 南昌大学, 2016
65 Du F, Yu D, Dai L, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high performance capacitance [J]. Chem. Mater., 2011, 23(21): 4810
66 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv. 2020, 6: 1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[6] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[9] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[11] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[12] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[13] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[14] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[15] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.