|
|
含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势 |
周海涛( ), 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸 |
上海航天精密机械研究所 上海 201600 |
|
Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements |
ZHOU Haitao( ), WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China |
引用本文:
周海涛, 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸. 含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势[J]. 材料研究学报, 2020, 34(11): 801-810.
Haitao ZHOU,
Yanbo WANG,
Lu XIAO,
Jingli SUN,
Yuling XU,
Ge CHEN.
Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. Chinese Journal of Materials Research, 2020, 34(11): 801-810.
1 |
Song J F, She J, Chen D L, et al. Review latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magn. Alloys., 2020, 8(1): 1
|
2 |
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magn. Alloys., 2019, 7(3): 536
|
3 |
Alaneme K K, Okotete E A. Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments [J]. J. Magn. Alloys., 2017, 5(4): 460
|
4 |
Wang X J, Hu X S, Liu W Q, et al. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites [J]. Mater. Sci. Eng. A., 2017, 682: 491
|
5 |
Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. J. Magn. Alloys., 2017, 5(2): 189
|
6 |
You S H, Huang Y D, Ulrich K K, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloys., 2017, 5(3): 239
|
7 |
Feng Y, Chen C, Peng C Q, et al. Research progress of magnesium-based composites [J]. Chin. J. Nonferrous. Met., 2017, 27(12): 2385
|
7 |
冯艳, 陈超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27(12): 2385
|
8 |
He Y, Yuan Q H, Luo L, et al. Current Study and Novel Ideas on Magnesium Matrix Composites [J]. J. aeronaut. Mater., 2018, 38(4): 26
|
8 |
何阳, 袁秋红, 罗岚等. 镁基复合材料研究进展及新思路 [J]. 航空材料学报, 2018, 38(4): 26
|
9 |
Shen K, Zhang Q, Huang ZH, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites [J]. Compos. Part A., 2014, 56(1): 44
|
10 |
Xiang SL, Wang XJ, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
|
11 |
Xiang SL, Gupta M, Wang XJ, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Compos. Part. A., 2017, 100: 183
|
12 |
Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon., 2018, 139: 954
|
13 |
Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng. A., 2001, 298: 193
|
14 |
Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloys Compd., 2020, 821: 153379
|
15 |
Rashad M, Pan F S, Zhang J Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy [J]. J. Alloys Compd., 2015, 646: 223
|
16 |
Rashad M, Pan F S, Lin D, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets [J]. Mater. Des., 2016, 89: 1242
|
17 |
Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
|
18 |
Li C P, Wang Z G, Zha M, et al. Effect of pre-oxidation treatment of nano-SiC particulates on microstructure and mechanical properties of SiC/Mg-8Al-1Sn composites fabricated by powder metallurgy combined with hot extrusion [J]. Materials., 2016, 9: 964
|
19 |
Rashad M, Pan F S, Asif M, et al. Powder metallurgy of Mg-1Al-1Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20: 4250
|
20 |
Muley S V, Singh S P, Sinha P, et al. Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior [J]. Mater. Des., 2014, 53: 475
|
21 |
Wang X J, Wu K, Huang W X, et al. Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM [J]. Compos. Sci. Technol., 2007, 67: 2253
|
22 |
Shen M J, Wang X J, Zhang M F, et al. Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites [J]. Mater. Sci. Eng. A., 2014, 601: 58
|
23 |
Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
|
24 |
Qiu X. Microstructure and Mechannical Properties of SiCp/AZ91 Magnesium Matrix Composites Fabricated By Squeeze Casting [D]. Harbin: Harbin Institute of Technology, 2006
|
24 |
邱鑫. 挤压铸造SiCp/AZ91镁基复合材料的显微结构与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2006
|
25 |
Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2017
|
25 |
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
|
26 |
Wu G H, Song M H, Xiu Z Y, et al. Microstructure and Properties of M40 Carbon Fibre Reinforced Mg-Re-Zr Alloy Composites. J. Mater. Sci. Technol. [J]. J. Mater. Sci. Technol., 2009, 25 (03): 423426
|
27 |
Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites [J]. Mater. Sci. Eng. A., 2018, A711: 633
|
28 |
Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng. A., 2014, A597: 264
|
29 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature., 2015, 528(7583): 539
|
30 |
Liu G J, Li W F, Du J. Investigation on wettability of Al-Mg metal matrix composites [J]. Foundry., 2006, 55(9): 911
|
30 |
刘贯军, 李文芳, 杜军. 铝、镁基复合材料的润湿性探究 [J]. 铸造, 2006, 55(9): 911
|
31 |
Wang T, Huang X F, Liang Y, et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite [J]. Hot. Work. Technol., 2008, 37(20): 98
|
31 |
王韬, 黄晓锋, 梁艳等. 颗粒增强镁基复合材料的增强复合新思路 [J]. 热加工工艺, 2008, 37(20): 98
|
32 |
Russell-Stevens M, Todd R, Papakyriacou M. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite [J]. Surf. Interface Anal., 2005, 37(3): 336
|
33 |
Viaia J C, Claveyrolas G, Bosselet F. The chemical behaviour of carbon fibres in magnesium base Mg-Al alloys [J]. J. Mater. Sci., 2000, 35(7): 1813
|
34 |
Feldhoff A, Pippel E, Woltersdorf J. et al. Interface engineering of carbon-fiber reinforced Mg-Al alloys [J]. Adv. Eng. Mater, 2000, 2(8): 471
|
35 |
Bouix J, Berthet M P, Bosselet F, et al. Physico-chemistry of interfaces in inorganic-matrix composites [J]. Compos. Sci. Technol., 2001, 61(3): 355
|
36 |
Dan Z, Ping S, Shi L, et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates [J]. Appl. Surf. Sci., 2010, 256(23): 7043
|
37 |
Wu F, Zhu J, Chen Y, et al. The effects of processing on the microstrues and properties of Gr/Mg composites [J]. Mater. Sci. Eng. A., 2000, 277(1-2): 143
|
38 |
Xia C J. Interface tailoring in coated carbon fiber reinforced magnesium alloy composites [D]. Shanghai: Shanghai Jiao Tong University, 2013
|
38 |
夏存娟. 涂层碳纤维镁基复合材料的界面控制 [D]. 上海: 上海交通大学, 2013
|
39 |
Contreras A, Leonb C A, Drew R A L, et al. Wettability and spreading kinetics of Al and Mg on TiC [J]. Scr. Mater., 2003, 48(12): 1625
|
40 |
Uozumi H, Kobayashi K, Nakanishi K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Mater. Sci. Eng. A., 2008, 495(1-2): 282
|
41 |
Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon., 2016, 96: 843
|
42 |
Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
|
43 |
Reischer E, Pippel J, Woltersdorf G, et al. Carbon fibre-reinforced magnesium: Improvement of bending strength by nanodesign of boron nitride interlayers [J]. Mater. Chem. Phys., 2007, 104(1): 83-87
|
44 |
Korner C, Schaff W, Ottmuller M, et al. Carbon long fiber reinforced magnesium alloys [J]. Adv. Eng. Mater., 2000, 2 (6): 327
|
45 |
Nai M H, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites [J]. Mater. Des., 2014, 60(8): 490
|
46 |
Lu P, Xia C J, Wang H W, et al. Study on zinc-coated Cf /Mg composite [J]. Hot. Work. Technol., 2009, 38(10): 122
|
46 |
鲁鹏, 夏存娟, 王浩伟等. Zn涂层碳纤维增强镁基复合材料的研究 [J]. 热加工工艺, 2009, 38(10): 122
|
47 |
Wang X, Liu W, Hu X, et al. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling [J]. Mater. Sci. Eng. A., 2018, 715: 49
|
48 |
Shen M J, Wang X J. Ying T,et al. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles [J]. J. Alloys. Compd., 2016, 686: 831
|
49 |
Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method [J]. J. Magn. Alloys., 2016, 4(4): 270
|
50 |
Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composties [J]. Mater. Sci. Eng. A., 2018, 711: 633
|
51 |
Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
|
52 |
Han G, Wang Z, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng. A., 2015, 628: 350
|
53 |
Liang J, Li H, Qi L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728
|
54 |
Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
|
55 |
Song M H, Wu G H, Chen G Q, et al. Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M40/AZ91D composites [J]. Trans. Nonferrous Met. Soc. China., 2010, 20(1): 47
|
56 |
Song M H, Wu G H, Yang W S, et al. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method [J]. J. Mater. Sci. Technol., 2010, 26(10): 931
|
57 |
Wang X J, Xiang Y Y, Hu X S. et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta. Metall. Sin., 2019, 55(1): 73
|
57 |
王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55(1): 73
|
58 |
Jiang B. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
|
58 |
蒋博. Cf/Mg复合材料制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
59 |
Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
|
59 |
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
60 |
Sankaranarayanan S, Jayalakshmi S, Gupta M. Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite [J]. J. Magn. Alloys., 2014, 2(1): 13
|
61 |
Hassan S F, Gupta M. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement [J]. J. Mater. Sci., 2002, 37(12): 2467
|
62 |
Wang W L, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67(7/8): 1541
|
63 |
Zhang X C, Wang C J, Deng K K, et al. Fabrication, microstructure and mechanical properties of the as-rolled ZW31/PMMCs laminate [J]. Mater. Sci. Eng. A., 2019, 761: 138043
|
64 |
Yuan Q H. Preparation and mechanical properties of AZ91 alloy composite reinforced with nano-carbon materials [D]. Nanchang: Nanchang University, 2016
|
64 |
袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究 [D]. 南昌: 南昌大学, 2016
|
65 |
Du F, Yu D, Dai L, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high performance capacitance [J]. Chem. Mater., 2011, 23(21): 4810
|
66 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv. 2020, 6: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|