Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 770-776    DOI: 10.11901/1005.3093.2020.132
  研究论文 本期目录 | 过刊浏览 |
热处理对Ag-ZnO异质结构光催化性能的影响
朱晓东1, 王娟1, 马洋1, 罗建军2, 喻林2, 冯威1()
1.成都大学机械工程学院 成都 610106
2.四川一然新材料科技有限公司 成都 610105
Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure
ZHU Xiaodong1, WANG Juan1, MA Yang1, LUO Jianjun2, YU Lin2, FENG Wei1()
1. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2. Sichuan Yiran New Material Technology Co. Ltd. , Chengdu 610105, China
引用本文:

朱晓东, 王娟, 马洋, 罗建军, 喻林, 冯威. 热处理对Ag-ZnO异质结构光催化性能的影响[J]. 材料研究学报, 2020, 34(10): 770-776.
Xiaodong ZHU, Juan WANG, Yang MA, Jianjun LUO, Lin YU, Wei FENG. Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure[J]. Chinese Journal of Materials Research, 2020, 34(10): 770-776.

全文: PDF(10098 KB)   HTML
摘要: 

用溶胶-凝胶法制备纯ZnO和Ag修饰ZnO复合光催化剂,并分别对其进行了400℃、450℃、500℃保温2 h的热处理。使用XRD、SEM、TEM、XPS、PL、BET等手段对其进行了表征。结果表明,纯ZnO和Ag修饰ZnO均为六方纤锌矿晶型,Ag颗粒沉积在ZnO表面形成了Ag-ZnO异质结构。以罗丹明B为目标污染物研究了样品的光催化活性。结果表明,热处理温度对纯ZnO的光催化性能的影响较大,在450℃热处理后光催化效果最佳;热处理温度对Ag修饰ZnO的光催化性能没有显著的影响;Ag修饰ZnO比纯ZnO的光催化活性均有所提高,因为Ag修饰提高了ZnO表面羟基的含量并抑制了光生电子与空穴的复合。在500℃热处理后Ag修饰ZnO对罗丹明B的60 min降解率达到98%,其反应速率常数为0.063 min-1

关键词 复合材料ZnOAg修饰光催化活性溶胶-凝胶法    
Abstract

The pure ZnO and Ag-modified ZnO composite photocatalysts were prepared by sol-gel method and subsequently heat treated at 400℃, 450℃ and 500℃ respectively for 2 h. The samples were characterized by XRD, SEM, TEM, XPS, PL and BET, respectively. The results show that both pure ZnO and Ag-ZnO are hexagonal wurtzite crystal structures. Ag particles deposit on the surface of ZnO, forming Ag-ZnO heterostructure. The photocatalytic activity of samples was assessed through the degradation of Rhodamine B. The results show that the heat treatment temperature has a great influence on the photocatalytic performance of pure ZnO, while the pure ZnO annealed at 450℃ exhibits the best photocatalytic activity. However, the annealing temperature has negligible impact on the photocatalytic activity of Ag-ZnO and all of the Ag-ZnO samples show better photocatalytic activity than that of the pure ZnO. The enhancement in photocatalytic activity of Ag-ZnO can be attributed to the effect of suppressing the recombination of photogenerated pairs and the increase of surface hydroxyl content. The degradation rate of RhB for the Ag-ZnO annealed at 500℃ is 98% after 60 min and the reaction rate constant is 0.063 min-1.

Key wordscomposite    ZnO    Ag modification    photocatalytic activity    sol-gel method
收稿日期: 2020-04-20     
ZTFLH:  TB34  
基金资助:四川省科技厅应用基础研究(19YJ0664);四川省科技厅应用基础研究(2018JY0062);2020成都大学大学生创新计划(CDU-CX-2020028);2020成都大学大学生创新计划(CDU-CX-2020034)
作者简介: 朱晓东,男,1984年生,副教授
图1  纯ZnO和Ag-ZnO的XRD图谱
图2  在500℃热处理后纯ZnO 和Ag-ZnO的SEM照片
图3  在500℃热处理后 Ag-ZnO 的TEM照片和HRTEM照片
图4  在500℃热处理后纯ZnO和Ag-ZnO的 XPS图谱
图5  纯ZnO和Ag-ZnO对RhB的降解率曲线
图6  纯ZnO和Ag-ZnO对RhB的光降解动力学曲线
图7  纯ZnO和Ag-ZnO 的PL光谱
图8  Ag-ZnO的光催化降解RhB示意图
[1] Lu J, Wang H H, Dong S J, et al. Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods [J]. J. Alloys Compd., 2014, 617: 869
doi: 10.1016/j.jallcom.2014.08.096
[2] Xie L, Wang P, Li Z Fet al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
[2] 谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
[3] Yu Y, Yao B H, Yang F, et al. Preparation and photocatalytic properties of TiO2-ZnO composite hollow microspheres [J]. Acta Mater. Compos. Sin., 2019, 36(1): 200
[3] 于艳, 姚秉华, 杨帆等. TiO2-ZnO复合中空微球的制备及光催化性能 [J]. 复合材料学报, 2019, 36(1): 200
[4] Chang Y C, Guo J Y. ZnO/Pt core-shell nanorods on the cotton threads with high enhanced photocatalytic properties [J]. Mater. Chem. Phys., 2016, 180: 9
doi: 10.1016/j.matchemphys.2016.06.013
[5] Guy N, Ozacar M. The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation International [J]. Int.J. Hydrogen Energ., 2016, 41: 20100
[6] Jung H J, Koutavarapu R, Lee S K, et al. Enhanced photocatalytic activity of Au-doped Au@ZnO core-shell flower-like nanocomposites [J]. J. Alloys Compd., 2018, 735: 2058
doi: 10.1016/j.jallcom.2017.11.378
[7] Yang W S, Jian S J, Zuo T, et al. Preparation of Ag/ ZnO composite hollow material and photocatalytic degradation for Rhodamine B [J]. New Chem. Mater., 2018, 46(1): 140
[7] 杨为森, 简绍菊, 左甜等. Ag/ZnO复合中空材料的制备及光催化降解罗丹明B [J]. 化工新型材料, 2018, 46(1): 140
[8] Jia Z G, Peng K K, Li Y H, et al. Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 873
doi: 10.1016/S1003-6326(11)61259-4
[9] Dong Y Y,Jiao Y Q,Jiang B J, et al. Commercial ZnO and its hybrid with Ag nanoparticles: Photocatalytic performance and relationship with structure [J]. Chem. Phys. Lett., 2017, 679: 137
[10] Muñoz-Fernandez L, Sierra-Fernandez A, Miloševic´ O, et al. Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation [J]. Adv. Powder Technol., 2016, 27: 983
[11] Zhao X H, Su S, Wu G L, et al. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance [J]. Appl. Surf. Sci., 2017, 406: 254
[12] Bouzid H, Faisal M, Harraz F A, et al. Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity [J]. Catal. Today, 2015, 252: 20
[13] Meng A, Li X J, Wang X L, et al. Preparation, photocatalytic properties and mechanism of Fe or N-doped Ag/ZnO nanocomposites [J]. Ceram. Int., 2014, 40: 9303
[14] Liu Y S, Gao W, Zhang C. In situ formation of Ag/ZnO heterostructure arrays during synergistic photocatalytic process for SERS and photocatalysis [J]. J. Taiwan Inst. Chem. E., 2018, 88: 277
[15] Liu H R, Hu Y C, Zhang Z X, et al. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation [J]. Appl. Surf. Sci., 2015, 355: 644
[16] Intarasuwan K, Amornpitoksuk P, Suwanboon S, et al. Effect of Ag loading on activated carbon doped ZnO for bisphenol A degradation under visible light [J]. Adv. Powder Technol., 2018, 29: 2608
[17] Zhang L L, Zhu D, He H X, et al. Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect [J]. J. Phys. Chem. Solids, 2017, 102: 27
[18] Demirci S, Dikici T, Yurddaskal M, et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances [J]. Appl. Surf. Sci., 2016, 390: 591
[19] Jiang H Q, Liu Y D, Li J S, et al.Synergetic effects of lanthanum, nitrogen and phosphorus tri-doping on visible-light photoactivity of TiO2 fabricated by microwave-hydrothermal process [J]. J. Rare Earth., 2016, 34(6): 604
[20] Jaramillo-Páez C, Navío J A, Hidalgo M C, et al. High UV-photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method [J]. Catal. Today, 2017, 284: 121
[21] Chen F, Tang Y Z, Liu C B, et al. Synthesis of porous structured ZnO/Ag composite fibers with enhanced photocatalytic performance under visible irradiation [J]. Ceram. Int., 2017, 43: 14525
[22] Wang M, Xu J Y, Sun T M, et al.Facile photochemical synthesis of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities [J]. Mater. Lett., 2018, 219: 236
[23] Sampaio M J, Lima M J,Baptista D L, et al. Ag-loaded ZnO materials for photocatalytic water treatment [J]. Chem. Eng. J., 2017, 318: 95
[24] Yang Y Q, Li H X, Hou F L, et al. Facile synthesis of ZnO/Ag nanocomposites with enhanced photocatalytic properties under visible light [J]. Mater. Lett., 2016, 180: 97
[25] Hossein F, Kasaeian A, Pourfayaz F, et al. Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol [J]. Mater. Sci. Semicon. Proc., 2018, 83: 175
[26] Rajaboopathi S, Thambidurai S. Enhanced photocatalytic activity of Ag-ZnO nanoparticles synthesized by using Padina gymnospora seaweed extract [J]. J. Mol. Liq., 2018, 262: 148
doi: 10.1016/j.molliq.2018.04.073
[27] Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C, 2008, 112: 13563
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.