Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 824-830    DOI: 10.11901/1005.3093.2019.178
  研究论文 本期目录 | 过刊浏览 |
羰基铁粉改性环氧树脂/乙基纤维素微胶囊的吸波性能
王信刚(),汪兴京,夏龙,徐伟
南昌大学建筑工程学院 南昌 330031
Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder
WANG Xingang(),WANG Xingjing,XIA Long,XU Wei
School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
引用本文:

王信刚,汪兴京,夏龙,徐伟. 羰基铁粉改性环氧树脂/乙基纤维素微胶囊的吸波性能[J]. 材料研究学报, 2019, 33(11): 824-830.
Xingang WANG, Xingjing WANG, Long XIA, Wei XU. Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder[J]. Chinese Journal of Materials Research, 2019, 33(11): 824-830.

全文: PDF(5777 KB)   HTML
摘要: 

以羰基铁粉为吸波剂用溶剂蒸发法制备出环氧树脂/乙基纤维素微胶囊,使用矢量网络分析仪、激光粒度分析仪、ESEM-EDS和FTIR分别表征了微胶囊的吸波性能、粒径分布、颗粒特性以及化学结构。结果表明:羰基铁粉嵌入乙基纤维素中物理结合成微胶囊壁材,羰基铁粉提高了微胶囊的吸波性能。羰基铁粉的粒径越小与电磁波相互作用的面积越大,微胶囊的吸波性能越好。频率为18 GHz时,未掺羰基铁粉的微胶囊电磁波反射损失为-1.63 dB,而掺入粒径为3 μm和0.5 μm羰基铁粉(掺量50%)的微胶囊电磁波反射损失分别为-5.08 dB和-5.44 dB,分别降低了3.45 dB和3.81 dB。掺入粒径为0.5 μm羰基铁粉的微胶囊不团聚,其微观形貌更好。

关键词 复合材料吸波性能微胶囊羰基铁粉自修复乙基纤维素    
Abstract

Carbonyl iron powder was taken as electromagnetic wave absorbent, then the epoxy/ ethyl cellulose microcapsule incorporated with carbonyl iron particles was prepared by means of solvent evaporation. The wave-absorbing property, particle size distribution, characteristics of particle and chemical structure of the microcapsules were characterized by means of vector network analyzer, laser particle size analyzer, ESEM-EDS and FTIR. The result shows that the wall material of the microcapsules consists of carbonyl iron powder and ethyl cellulose, thus the wave-absorption properties of microcapsules incorporated with carbonyl iron powder were reinforced. The smaller carbonyl iron powder has a larger interaction area with electromagnetic waves, therefore, the microcapsules incorporated with smaller particle carbonyl iron particles will exhibit better wave-absorption properties. At 18 GHz, the reflection loss of microcapsules without carbonyl iron particles was -1.63 dB, but the reflection loss of the microcapsules incorporated with 50% carbonyl iron particles can reach -5.08 dB and -5.44 dB for the particle size of 3 μm and 0.5 μm respectively, correspondingly, which are 3.45 dB and 3.81 dB lower than that for microcapsule without carbonyl iron particles, besides, the microcapsules incorporated with 50% carbonyl iron particles of 0.5 μm show excellent dispersibility as well.

Key wordscomposite    wave-absorbing property    microcapsule    carbonyl iron powder    self-healing    ethyl cellulose
收稿日期: 2019-03-28     
ZTFLH:  TB333  
基金资助:国家自然科学基金(51972158);国家自然科学基金(51562024);江西省杰出青年人才计划(20162BCB23014);南昌大学研究生创新专项(CX2018048)
作者简介: 王信刚,男,1977年生,教授
图1  微胶囊的制备流程图
No1234567
The partical size of carbonyl iron powder/μm-3330.50.50.5
The dosage of CIP/%0103050103050
表1  羰基铁粉的用量
图2  不同微胶囊的反射损耗曲线
图3  未掺羰基铁粉的微胶囊、掺入不同粒径羰基铁粉的微胶囊的粒径分布以及对未掺羰基铁粉的微胶囊的粒径分布曲线的高斯曲线拟合
图4  微胶囊整体效果的ESEM照片
图5  单个微胶囊的ESEM照片
图6  未掺羰基铁粉时的微胶囊、微胶囊芯材、掺入羰基铁粉的微胶囊(3 μm、50%)、掺入羰基铁粉的微胶囊壁材(3 μm、50%)以及羰基铁粉的红外光谱图
图7  微胶囊的EDS面扫描照片(3 μm、50%)
图8  微胶囊的EDS面扫描照片(0.5 μm、50%)
图9  单个微胶囊的线扫描能谱分析
图10  电磁波在基体中传播的示意图
[1] Ge C Q, Wang L Y, Liu G. Solution blending preparation and electromagnetic properties of carbon nanotubes/planar anisotropic carbonyl iron composite [J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1912
[1] ((葛超群, 汪刘应, 刘 顾. 碳纳米管/平面各向异性羰基铁复合材料的液相共混法制备及其电磁性能 [J]. 复合材料学报, 2018, 35(7): 1912)
[2] Zhou Y Y, Xie H, Zhou W C. Current research status of oxidation resistance of carbonyl iron powders [J]. Mater. Rev, 2018, 32(5): 749
[2] (周影影, 谢 辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 材料导报, 2018, 32(5): 749)
[3] Xiong G X, Deng X P, Zeng D H, et al. Property and preparation of carbonyl iron powder/polymethacrylate/ poly-aniline composite absorbents [J]. Acta Materiae Compositae Sinica, 2008, 25(4): 35
[3] (熊国宣, 邓雪萍, 曾东海等. 羰基铁粉/聚甲基丙烯酸甲酯/聚苯胺复合吸波剂的制备与性能 [J].复合材料学报, 2008, 25(4): 35)
[4] Cheetham A K, Rao C N R. Materials science: There's room in the middle [J]. Science, 2007, 318(5847): 58
[5] He D X, Qiu Y, Li L L, et al. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption [J]. Sci. China-Mater., 2015, 58(7): 566
[6] Kimura S, Kato T, Hyodo T, et al. Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method [J]. J. Magn. Magn. Mater., 2007, 312(1): 181
[7] Wang Z J, Li K Z, Wang C, et al. Wave-absorbing properties of carbonyl iron powder/carbon fiber reinforced cement based composites [J]. Journal of the Chinese Ceramic Society, 2011, 39(01): 69
[7] (王振军, 李克智, 王 闯等. 羰基铁粉-碳纤维水泥基复合材料的吸波性能 [J]. 硅酸盐学报, 2011, 39(01): 69)
[8] Cui R Z, Wang B C, Wang T, et al. Electromagnetic properties and microwave absorbing characteristics of carbonyl iron/Si-epoxy matrix composites [J]. Journal of Functional Materials, 2011, 42(2): 218
[8] (崔荣振, 王博翀, 王 涛等. 羰基铁/有机硅环氧树脂复合材料的电磁性质及微波吸收性质 [J]. 功能材料, 2011, 42(2): 218)
[9] Zou H Z, Wan W T, Yang M H, et al. Preparation and property of thermal absorbing materials via aluminum oxide and carbonyl iron [J]. Polymer Materials Science & Engineering, 2019, 35(02): 136
[9] (邹海仲, 万炜涛, 杨名华等. 复合粉体制备导热吸波材料及其表征 [J]. 高分子材料科学与工程, 2019, 35(02): 136)
[10] Weng X, Li B, Zhang Y, et al. Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties [J]. J. Alloy. Compd., 2017, 695: 508
[11] Drmota A, Koselj J, Drofenik M, et al. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure [J]. J. Magn. Magn. Mater., 2012, 324(6): 1225
[12] Tong G X, Guan J G, Wang W, et al. Preparation and properties of carbonyl iron/A1203 core-shell composite particles. [J]. Chinese Journal of Materials Research, 2008(01): 102
[12] (童国秀, 官建国, 王 维等. 羰基铁/Al2O3核壳复合粒子的制备和性能 [J]. 材料研究学报, 2008(01): 102)
[13] Guo J H, Shao J Y, Xu F, et al. RAM-microencapsulated phase change infrared and microwave stealth composites [J]. Fine Chemicals, 2017, 34(12): 1350
[13] (郭军红, 邵竞尧, 许 芬等. RAM-相变微胶囊红外微波隐身复合材料 [J]. 精细化工, 2017, 34(12): 1350)
[14] Wang X G, Xia L, Fu X G, et al. Particle characteristics and sustained release properties of epoxy resin/ethyl cellulose microcapsule [J/OL]. Journal of Building Materials: 1-8[2019-03-20].
[14] (王信刚, 夏 龙, 扶兴国等. 环氧树脂/乙基纤维素微胶囊的颗粒特性与缓释性能[J/OL]. 建筑材料学报: 1-8[2019-03-20].)
[15] Xie S, Ji Z J, Yang Y, et al. Recent progress in electromagnetic wave absorbing building materials [J]. Mater. Rev, 2016, 30(13): 63
[15] (解帅, 冀志江, 杨 洋等. 电磁波吸收建筑材料的应用研究进展 [J]. 材料导报, 2016, 30(13): 63)
[16] Xie G Z, Wang P, Yuan L K, et al. The effect of coupling agent on the microwave properties of the melt-spun iron/earth nanocomposites [J]. J. Appl. Polym. Sci., 2009, 114(4): 2344
[17] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, ele- ctromagnetic interference shielding and microwave-absorbing of short carbon fiber/ silica composites [J]. Carbon, 2010, 48(3): 788
[18] Ji R L, Cao C B, Chen Z, et al. Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absor- ption properties. [J]. J. Mater. Chem. C, 2014, 2(29): 5944
[19] Wen G, Zhao X, Liu Y, et al. Influence of Fe-B addition on electromagnetic wave absorption properties of RGO composite [J]. J. Mater. Sci. -Mater. Electron., 2018, 29(12): 1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.