Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 547-554    DOI: 10.11901/1005.3093.2017.658
  研究论文 本期目录 | 过刊浏览 |
环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征
朱大勇1,2, 辜婷1,2, 于杰2, 鲁圣军1,2()
1 贵州大学材料与冶金学院 贵阳 550025
2 国家复合改性聚合物材料工程技术研究中心 贵阳 550014
Dynamic Rheological Characterization of PLA/PBS Blends Compatibilized by Epoxy Furan Resin
Dayong ZHU1,2, Ting GU1,2, Jie YU2, Shengjun LU1,2()
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2 National Engineering Technology Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
引用本文:

朱大勇, 辜婷, 于杰, 鲁圣军. 环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征[J]. 材料研究学报, 2018, 32(7): 547-554.
Dayong ZHU, Ting GU, Jie YU, Shengjun LU. Dynamic Rheological Characterization of PLA/PBS Blends Compatibilized by Epoxy Furan Resin[J]. Chinese Journal of Materials Research, 2018, 32(7): 547-554.

全文: PDF(2824 KB)   HTML
摘要: 

用熔融共混法制备不同环氧呋喃树脂(FER)含量的聚乳酸/环氧呋喃树脂/聚丁二酸丁二醇酯(PLA/FER/PBS)共混物,使用旋转流变仪、扫描电镜(SEM)和万能试验机等手段研究了FER含量对PLA/PBS共混体系的动态流变行为和相容性的影响。结果表明:当应变(γ)小于30%时动态模量不随γ的变化而变化,共混体系表现出线性黏弹行为;当γ大于30%后动态模量明显降低,出现了“Payne”效应。FER能改善PLA/PBS共混体系的加工性能;PLA/PBS共混体系有两个不同的驰豫过程,使曲线出现两个明显的半圆弧,加入FER后PLA和PBS两相的形态发生了改变;当FER含量为0.3 phr时共混体系的Han曲线与vGP曲线重叠,表明PLA和PBS的相容性较好;当FER含量为0.3 phr时PLA与PBS的界面黏附性最佳,表明PLA与PBS具有最为理想的界面相容性;FER添加量为0.3 phr时共混物的拉伸强度和冲击强度分别达到最大值56.9 MPa和4.33 kJ/m2,比PLA/PBS共混物提高了11.2%和37.0%。

关键词 有机高分子材料聚乳酸相容性流变行为环氧呋喃树脂    
Abstract

Poly(lactic acid)/epoxy furan resin/poly (butylene succinate) (PLA/FER/PBS) blends with different epoxy furan resin (FER) content were prepared by melt blending, while the effect of FER content on the dynamic rheological behavior and compatibility of the PLA/PBS blends was investigated by means of rotary rheometer, scanning electron microscopy (SEM) and universal testing machine. Results show that when the strain (γ) is less than 10%, the dynamic modulus does not change with the change of γ and the blends show linear viscoelastic behavior; when γ is more than 10%, the dynamic modulus decrease obviously, showing the "Payne" effect; FER can improve the processing properties of PLA/PBS blends;PLA/PBS blends have two different relaxation processes, the relevant curves have two distinct half arc, PLA and PBS phase morphology changed with the addition of FER; the time- and temperature-superposition-curves show that for PLA/PBS blends with FER content of 0.3 phr, of which, the Han-curves and vGP-curves of the blends present good overlap, implying the compatibility between PLA and PBS is good; the interface adhesion between PLA and PBS is the best, and the PLA and PBS has the most ideal interfacial compatibility; the tensile strength and impact strength of the blends reached the maximum value of 56.9 MPa and 4.33 kJ/m2, which is 11.2% and 37% higher than that of the simple PLA/PBS blends, respectively.

Key wordsorganic polymer materials    poly(lactic acid)    compatibility    rheological behavior    epoxy furan resin
收稿日期: 2017-11-07     
ZTFLH:  TQ320  
基金资助:国家自然科学基金(51563002),贵州省“百层次”创新型人才项目黔科合平台人才([2016]5653)
作者简介:

作者简介 朱大勇,男,1992年生,硕士生

图1  环氧呋喃树脂的红外谱图
图2  FER与PLA/PBS反应方程式
Sample PLA/phr PBS/phr FER/phr
FER-0 80 20 0
FER-0.1 80 20 0.1
FER-0.2 80 20 0.2
FER-0.3 80 20 0.3
FER-0.4 80 20 0.4
FER-0.5 80 20 0.5
表1  不同FER质量比的PLA/FER/PBS共混材料配比
图3  不同FER含量的PLA /FER /PBS共混体系的储能模量和损耗模量与应变的关系
图4  不同FER含量的PLA/FER/PBS共混体系复数黏度和频率变化曲线
图5  不同FER含量的PLA/FER/PBS共混体系的储能模量和损耗模量与频率变化曲线
Slope value G' ω2 G'' ω
KF0 1.621 0.880
KF1 1.460 0.842
KF2 1.607 0.876
KF3 1.721 0.931
KF4 0.778 0.812
KF5 0.779 0.821
表2  不同FER质量比的PLA/FER/PBS共混材料在低频区的斜率值
图6  不同FER含量的PLA/FER/PBS共混体系的Cole-Cole曲线
图7  不同FER含量的PLA /FER /PBS共混体系在不同温度下的Han曲线
图8  不同FER含量的PLA/FER/PBS共混体系在不同温度下的vGP曲线
图9  不同FER含量的PLA/FER/PBS共混物的微观形貌
图10  不同FER含量的PLA/FER/PBS共混物的机械性能
[1] Lv S S, Cao J, Tan H Y, et al.Effects of wood flour contents on performance of wood flour-starch/poly (lactic acid) composites[J]. Acta Mater. Compos. Sin ., 2015, 32: 347(吕闪闪, 曹军, 谭海彦等. 木粉含量对木粉-淀粉/聚乳酸复合材料性能的影响[J]. 复合材料学报, 2015, 32: 347)
[2] Wu D F, Zhang Y S, Zhang M, et al.Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend[J]. Eur. Polym. J ., 2008, 44: 2171
[3] Li Y L, Chen F S, Liu K L, et al.New research progress of biodegradable materials[J]. Plast. Sci. Technol ., 2012, 40(11): 70(李彦磊, 陈复生, 刘昆仑等. 可生物降解材料研究新进展[J]. 塑料科技, 2012, 40(11): 70)
[4] Lan X R, Liu X T, Hua S, et al.Effect of poly (acrylic acid) on the rheological and thermal properties of poly (lactic acid)[J]. Acta Polym. Sin ., 2013, (7): 922(兰小蓉, 刘小亭, 华笋等. PAA对PLA流变性能和热性能的影响[J]. 高分子学报, 2013, (7): 922)
[5] Sun J H, Feng X, Li P, et al.Preparation and characteration of PLA/starch blends compatibilized by furan epoxy resin[J]. Acta Polym. Sin ., 2016, (7): 946(孙晋皓, 冯欣, 李鹏等. 环氧呋喃树脂反应性增容改性聚乳酸/淀粉复合材料的研究[J]. 高分子学报, 2016, (7): 946)
[6] Deng Y L, Yang B, Miao J B, et al.Research progress in the toughening modification of polylactic acid[J]. Chem. Ind. Eng. Prog ., 2015, 34: 3975(邓艳丽, 杨斌, 苗继斌等. 聚乳酸增韧研究进展[J]. 化工进展, 2015, 34: 3975)
[7] Correa J P, Bacigalupe A, Maggi J, et al.Biodegradable PLA/PBAT/clay nanocomposites: Morphological, rheological and thermomechanical behavior[J]. J. Renew. Mater ., 2016, 4: 258
[8] Carrasco F, Pagès P, Gámez-Pérez J, et al.Kinetics of the thermal decomposition of processed poly(lactic acid)[J]. Polym. Degrad. Stabil ., 2010, 95: 2508
[9] Gui Z Y, Lu C, Cheng S J.Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide[J]. Polym. Test ., 2013, 32: 15
[10] Bhatia A, Gupta R K, Bhattacharya S N, et al.An investigation of melt rheology and thermal stability of poly(lactic acid)/ poly(butylene succinate) nanocomposites[J]. J. Appl. Polym. Sci ., 2009, 114: 2837
[11] Shibata M, Inoue Y, Miyoshi M.Mechanical properties, morphology, and crystallization behavior of blends of poly (l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate)[J]. Polymer, 2006, 47: 3557
[12] Lu J J, Bai H Y, Wang W, et al.Dynamic rheology studies on the miscibility of PVDF/PTW blends[J]. Acta Polym. Sin ., 2016, (3): 315(陆佳俊, 白绘宇, 王玮等. 动态流变学对PVDF/PTW共混物流体相容性研究[J]. 高分子学报, 2016, (3): 315)
[13] Zheng Q, Zuo M.Investigation of structure and properties for polymer systems based on dynamic rheological approaches[J]. Chinese J. Polym. Sci ., 2005, 23: 341
[14] Xu L Q, Zhao Y Q, Chen R Y, et al.Ethylene methyl acrylate copolymer toughened poly(lactic acid) blends: phase morphologies, mechanical and rheological properties[J]. Int. Polym. Proc ., 2016, 31: 301
[15] Yu X, Li J J, Wang Y W.Investigation of melt rheological properties of PET and PLA blends[J]. Mater. Rev ., 2012, 26(22): 59(于翔, 李静静, 王延伟. 聚乳酸/聚酯共混体系熔体流变性能研究[J]. 材料导报, 2012, 26(22): 59)
[16] Liu F, Zhong Y, Jiang C Y, et al.Studies on the viscoelasticity of poly (trimethylene terephthalate)/poly(ethylene-octene)/organomontmorillonite nanocomposites[J]. Polym. Compos ., 2012, 33: 999
[17] Utracki L A, Kamal M R.The rheology of polymer alloys and blends [A]. Polymer Blends Handbook[M]. Dordrecht: Springer, 2003: 449
[18] Xu L Q, Huang H X.Relaxation behavior of poly(lactic acid)/poly(butylene succinate) blend and a new method for calculating its interfacial tension[J]. J. Appl. Polym. Sci ., 2012, 125(Suppl.2): E272
[19] Meng B, Deng J J, Liu Q, et al.Transparent and ductile poly (lactic acid) / poly (butyl acrylate) (PBA) blends: Structure and properties[J]. Eur. Polym. J ., 2012, 48: 127
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 令狐昌开, 李小龙, 罗筑, 杨乐, 夏啸松. 亚磷酸三苯酯调控聚乳酸/氯化铁共混体系的降解行为和性能[J]. 材料研究学报, 2021, 35(8): 632-640.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.