Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 233-240    DOI: 10.11901/1005.3093.2016.679
  研究论文 本期目录 | 过刊浏览 |
氧化石墨烯/水泥基复合材料的微观结构和性能
吕生华1(), 张佳1, 罗潇倩1, 朱琳琳1, 倪蔡辉2
1 陕西科技大学资源与环境学院 西安 710021
2 南通新型建筑材料有限公司 南通 226299;
Microstructure and Properties for Composites of Graphene Oxide/Cement
Shenghua LV1(), Jia ZHANG1, Xiaoqian LUO1, Linlin ZHU1, Caihui NI2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 Nantong New Building Materials Co. Ltd., Nantong 226299, China;
引用本文:

吕生华, 张佳, 罗潇倩, 朱琳琳, 倪蔡辉. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3): 233-240.
Shenghua LV, Jia ZHANG, Xiaoqian LUO, Linlin ZHU, Caihui NI. Microstructure and Properties for Composites of Graphene Oxide/Cement[J]. Chinese Journal of Materials Research, 2018, 32(3): 233-240.

全文: PDF(6701 KB)   HTML
摘要: 

对石墨进行氧化和超声分散制备了氧化石墨烯(GO)纳米片层分散液,GO纳米片层的厚度小于11.95 nm、平面尺寸为50~900 nm,结构中含有羟基、羰基和环氧基等化学基团。在水泥复合材料中掺入0.03%的GO纳米片层,水泥基复合材料在整体上形成了由多面体状晶体通过相互交织、贯穿、嵌入等方式构成的带有花型形貌的规整微观结构。这种结构使水泥基复合材料的28 d抗折强度和抗压强度分别比对照样品提高了76.2%和86.1%,水泥基体的孔隙率、平均孔径以及裂缝等明显减少。

关键词 无机非金属材料氧化石墨烯水泥基复合材料水泥水化产物微观结构    
Abstract

Graphene oxide (GO) nanosheets were prepared via oxidation treatment of graphite and then the dispersion liquid of which was prepared by ultrasound vibration in. The thickness and plane size of GO nanosheets are less than 11.95 nm and within 50~900 nm respectively. There are many chemical groups such as hydroxyl, carbonyl and epoxy groups on GO nanosheets. The prepared composite of graphene oxide/cement composited of ordinary cement and 0.03% GO nanosheets presents the regular micromorphology of ordinary cement, which consists of polyhedron-like cement hydration crystals by interweaving, penetrating and embedding each other. The compressive and flexural strength of the composite of GO/cement after curing for 28 days increase by 76.2% and 86.1% respectively, in comparison to that of the ordinary cement without GO addition, correspondingly the porosity and average pore diameter as well as cracks decrease obviously too.

Key wordsinorganic non-metallic materials    graphene oxide    cement matrix    cement hydration products    microstructure
收稿日期: 2017-01-29     
ZTFLH:  TU528.572  
基金资助:国家自然科学基金(21276152)和陕西省科技统筹项目(2016KTCL01-14)
作者简介:

作者简介 吕生华,男,1963年生,博士

图1  石墨和GO的FTIR和XPS图谱
图2  GO纳米片层的AFM形貌和尺寸分布
图3  未掺入GO水泥基复合材料在28天时的SEM形貌
图4  掺有0.03%GO水泥复合材料28 d时SEM形貌
图5  在不同电压下测定的掺有0.03%GO的水泥复合材料28 d时的花状形貌
Component and content/%
C O Ca Al Si Mg Fe S
Control sample* 2.46 35.92 43.27 3.26 10.48 1.49 1.51 1.61
EDS1 7.07 34.91 38.97 3.49 9.06 3.59 1.68 1.21
EDS2 4.32 37.19 38.51 5.34 9.39 3.65 1.12 1.48
EDS3 7.46 31.57 39.28 5.26 9.49 2.49 1.10 1.35
EDS4 3.11 10.49 37.69 3.33 8.65 3.49 2.06 1.29
表1  水泥水化产物EDS检测结果
图6  水泥基复合材料的XRD图谱
Total pore area/m2g-1 Median pore diameter/nm Average pore diameter/nm Apparent density/gmL-1 Porosity/%
Control sample 26.3 35.4 43.5 2.31 35.52
GO/cement composites 12.6 15.3 16.2 2.45 11.38
表2  水泥基复合材料在28 d时的孔结构
GO dosage/% Compressive strength/MPa Flexural strength/MPa
3 d 7 d 28 d 60 d 3 d 7 d 28 d 60 d
0 21.8±1.1 30.4±1.4 43.6±1.1 45.3±1.0 2.8±0.14 5.6±0.2 8.2±0.4 9.2±0.5
0.03 32.7±1.3 51.8±1.5 77.5±1.8 79.6±1.9 5.6±0.2 8.5±0.4 15.7±0.6 16.2±0.6
表3  水泥基复合材料抗压和抗折强度
图7  GO调控水泥水化产物及微观结构机理(a)水化(b)GO模板成型(c)规整花型结构
[1] Lv S H, Ma Y J, Qiu C C, et al.Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr. Build. Mater., 2013, 49: 121
[2] Al-Tulaian B S, Al-Shannag M J, Al-Hozaimy A R. Recycled plastic waste fibers for reinforcing portland cement mortar[J]. Constr. Build. Mater., 2016, 127: 102
[3] Mehran K M, Ali M.Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks[J]. Constr. Build. Mater., 2016, 125: 800
[4] Deyu K D, Corr D J, Hou P, et al.Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale[J]. Cem. Concr. Compos., 2015, 63: 30
[5] Ghatefar A, El-Salakawy E, Bassuoni M T.Early-age restrained shrinkage cracking of GFRP-RC bridge deck slabs: Effect of environmental conditions[J]. Cem. Concr. Compos., 2015, 64: 62
[6] Lameiras R, Barros J A O, Azenha M. Influence of casting condition on the anisotropy of the fracture properties of steel fibre reinforced self-compacting concrete (SFRSCC)[J]. Cem. Concr. Compos., 2015, 59: 60
[7] Wang J Basheer P A M, Nanukuttan S V. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete[J]. Constr. Build. Mater., 2016, 108: 56
[8] Shen D J, Jiang J L, Shen J X.Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age[J]. Constr. Build. Mater., 2016, 103: 67
[9] Di B C, Wyrzykowski M, Griffa M.Application of microstructurally-designed mortars for studying early-age properties: Microstructure and mechanical properties[J]. Cem. Concr. Res., 2015, 78: 234
[10] Scrivener K L, Juilland P, Monteiro P J.Advances in understanding hydration of Portland cement[J]. Cem. Concr. Res., 2015, 78: 38
[11] Sun H F, Li Z S S, Memon S A, et al. Influence of ultrafine 2CaOSiO2 powder on hydration properties of reactive powder concrete[J]. Materials, 2015, 8: 6195
[12] Quercia G, Lazaro A, Geus J W, et al.Characterization of morphology and texture of several amorphous nano-silica particles used in concrete[J]. Cem. Concr. Compos., 2013, 44: 77
[13] Huang Z Q, Zhang E Q, Lv X C.Research on the mechanical properties of the polymer cement concrete[J]. Concrete, 2016, (7): 95(黄志强, 张二芹, 吕晨曦. 聚合物改性混凝土力学性能试验研究[J]. 混凝土, 2016, (7): 95)
[14] Müller U, Miccoli L, Fontana P.Development of a lime based grout for cracks repair in earthen constructions[J]. Constr. Build. Mater., 2016, 110: 323
[15] Gil G A, Sandra M A, Cruz A, et al.Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement[J]. Nanoscale, 2012, 4: 2937
[16] Mujtaba A, Keller M, Ilisch S, et al.Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites[J]. ACS Macro Lett., 2014, 3: 481
[17] Zhao Y H, Ma Z K, Song H H.Synthesis and characterization of carbon fibers multi-scale reinforcement with grafted graphene oxide[J]. Chinese J. Mater.Res., 2016, 30(3): 229(赵永华, 马兆昆, 宋怀河. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229)
[18] Lin H L, Shen Y J, Wang Z J, et al.Preparation and performance of polypropylene nano-composites toughened-reinforced synergetically with functionalized graphene and elastomer[J]. Chinese J.Mate. Res., 2016, 30(5): 393(蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究[J], 材料研究学报, 2016, 30(5): 393)
[19] Lv S H, Liu J J, Sun T, et al.Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr. Build. Mater., 2014, 64: 231
[20] Lv S H, Deng L J, Yang W Q.Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J]. Cem.Concr.Compos., 2016, 66: 1
[21] Lv S H, Sun T, Liu J J, et al.Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. CrystEngComm, 2014, 16(36): 8508
[22] Zhu Y W, Murali S, Cai W W, et al.Graphene and graphene oxide: synthesis, properties and applications[J]. Adv. Mater., 2010, 22(35): 3906
[23] Chen Y M, Xu Z Z.Science base of preparation and application of high performance cement[M]. Beijing:Chemistry Industry press, 2008(陈益民, 许仲梓. 高性能水泥制备和应用的科学基础[M]. 北京: 化学工业出版社, 2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.