Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 801-810    DOI: 10.11901/1005.3093.2018.173
  本期目录 | 过刊浏览 |
热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究
翁天宇, 赖德林, 李晓聪, 朱炎彬, 车淳山, 邓文礼, 孔纲()
华南理工大学材料科学与工程学院 广州 510640
Preparation and Property of Superhydrophobic Phosphate-Cerium Composite Coatings on Hot-dip Galvanizing Carbon Steel
Tianyu WENG, Delin LAI, Xiaocong LI, Yanbin ZHU, Chunshan CHE, Wenli DENG, Gang KONG()
South China University of Technology, Guangzhou 510640, China
引用本文:

翁天宇, 赖德林, 李晓聪, 朱炎彬, 车淳山, 邓文礼, 孔纲. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究[J]. 材料研究学报, 2018, 32(11): 801-810.
Tianyu WENG, Delin LAI, Xiaocong LI, Yanbin ZHU, Chunshan CHE, Wenli DENG, Gang KONG. Preparation and Property of Superhydrophobic Phosphate-Cerium Composite Coatings on Hot-dip Galvanizing Carbon Steel[J]. Chinese Journal of Materials Research, 2018, 32(11): 801-810.

全文: PDF(5753 KB)   HTML
摘要: 

在Q235钢上热浸镀锌后,经磷酸盐-铈盐-硬脂酸复合处理制备了超疏水膜层。采用接触角仪测定试样的接触角(WCA)和滚动角(WSA),研究了其疏水性;采用场发射扫描电子显微镜(FE-SEM)、能谱分析仪(EDS)、傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)研究试样的表面形貌和成分结构;采用电化学阻抗谱(EIS)和塔菲尔极化曲线(Tafel)研究试样的耐腐蚀性。结果表明,超疏水膜层通过界面空气膜层的捕获可以有效减少基体腐蚀,当硝酸铈处理时间为300 s时性能最好,在表面形成一层多孔的磷酸锌/ 铈盐微纳米复合结构;硬脂酸疏水改性后接触角达到162°,电化学阻抗增加了2个数量级,显示出良好的耐腐蚀性。

关键词 金属材料超疏水磷化膜铈盐耐腐蚀    
Abstract

A superhydrophobic phosphate-cerium salt composite coating was prepared on hot-dip galvanizing carbon steel via a two-step chemical conversion process, namely first traditional phosphating and then dipping in solution of cerium nitrate and stearic acid. The prepared coating was characterized in terms of surface morphology, chemical composition and structure by means of field emission scanning electron microscopy (FE-SEM), energy spectrum analyzer (EDS), fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The hydrophobicity and corrosion performance of the prepared coating was assessed by means of contact angle- and sliding angle- measurement, as well as electrochemical impedance (EIS) and Tafel polarization curve measurement. Results show that the superhydrophobic coating can effectively reduce the corrosion through the interfacial air film. The contact angle of the coating can reach up to 162°. The coating, prepared by dipping in cerium salt solution for about 300 s, presents an electrochemical impedance two orders of magnitude superior to that of pure Zn, indicating a good corrosion resistance.

Key wordsmetallic materials    superhydrophobic    phosphate    cerium film    corrosion resistance
收稿日期: 2018-03-01     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51373055)
作者简介:

作者简介 翁天宇,男,1988年生,博士生

图1  常规磷化处理300 s以及在经过铈盐处理试样(P300Ce300)试样的XRD谱图
图2  铈盐处理常规磷化300 s试样(P300Ce300)的XPS高分辨谱图
图3  硬脂酸(STA)、铈盐处理常规磷化膜(P300Ce300)以及再经硬脂酸改性后(P300Ce300STA)试样的红外光谱图
图4  P300Ce300STA的动态接触角
图5  铈盐处理常规磷化膜不同时间改性(P300CexSTA)的接触角和滚动角
图6  铈盐处理常规磷化膜300 s经硬脂酸改性后试样(P300Ce300STA)对不同pH值的水溶液的接触角和滚动角
图7  不同磷化时间制备的样品SEM图
图8  铈盐处理常规磷化膜不同时间后经硬脂酸改性试样(P300CexSTA)的SEM图
Regions P Zn Ce
1 12.54 1.7 28.20
2 13.32 5.95 20.05
3 17.50 5.31 18.64
4 13.11 8.97 13.58
表1  图8中不同区域的EDS数据
图9  铈盐处理不同时间经硬脂酸改性后样品(P300CexSTA)在3.5% NaCl溶液中的EIS图
Sample Ecorr/V vs. SCE Icorr/μAcm-2
Zinc -1.053 14.92
P300 -1.032 5.04
P300Ce10STA -0.997 8.91
P300Ce120 STA -0.983 3.37
P300Ce30 STA -0.997 0.20
P300Ce600 STA -1.012 9.26
表2  图10中极化曲线的相关参数
图10  铈盐处理常规磷化膜不同时间并经硬脂酸改性后试样(P300CexSTA)在3.5%NaCl溶液中的极化曲线
图11  P300Ce300STA在3.5% NaCl溶液中浸泡不同时间后的EIS图
[1] Lu Y P, Wu J X, Ren Y L.Structure and corrosion resistance of dry-in-place chromating coating[J]. Electropl. Finish., 1997, 16(3): 8(卢燕平, 吴继勋, 任玉苓. 涂敷型铬酸盐钝化膜的结构与耐蚀性[J]. 电镀与涂饰, 1997, 16(3): 8)
[2] Li N, Li D Y, Yuan F, et al.Anticorrosion properties of chromated galvanizing coatings using lightness difference method[J]. J. Chin. Soc. Corros. Prot., 2000, 20: 293(李宁, 黎德育, 袁芳等. 明度差法研究电镀锌铬酸盐钝化膜的耐蚀性[J]. 中国腐蚀与防护学报, 2000, 20: 293)
[3] Boshkova N D, Petrov P D, Chukova V, et al.Surface morphology and corrosion behavior of zinc and zinc composite coatings with Cr(III) based conversion films[J]. Bulg. Chem. Commun., 2016, 48(spec. issue): 53
[4] Chalakova G S, Datcheva M D, Iankov R Z, et al.Comparative study via nanoindentation of the mechanical properties of conversion corrosion protective layers on aluminum formed in Cr6+-containing and Cr6+-free solutions[J]. Bulg. Chem. Commun., 2016, 48(spec. issue): 64
[5] Tencer M.Electrical conductivity of chromate conversion coating on electrodeposited zinc[J]. Appl. Surf. Sci., 2006, 252: 8229
[6] Liu J, Lu J T, Lin B L, et al.Effect of activating pretreatment with colloid titanium phosphate on growth and corrosion resistance of zinc phosphate coating on hot-dipping galvanized steel[J]. Mater. Prot., 2007, 40(2): 1(刘军, 卢锦堂, 林碧兰等. 胶质磷酸钛表调预处理对热镀锌层表面磷化膜的影响[J]. 材料保护, 2007, 40(2): 1)
[7] Liu X F, Cao X Y, Man R L.Rare earth lanthanum passivation technology of galvanized steel[J]. Corros. Prot., 2011, 32: 483(刘小风, 曹晓燕, 满瑞林. 镀锌钢板稀土镧盐钝化工艺 [J]. 腐蚀与防护, 2011, 32: 483)
[8] Peng T L, Man R L, Liang Y H.Properties of galvanized steel passivated by silane and rare earth cerium and lanthanum[J]. Mater. Prot., 2009, 42(3): 5(彭天兰, 满瑞林, 梁永煌. 镀锌钢板硅烷与稀土铈盐、镧盐复合钝化的性能及机理[J]. 材料保护, 2009, 42(3): 5)
[9] Liu H F, He M J, Wang S M, et al.Research on corrosion resistance of titanium salt chromium-free passivation for zinc coating[J]. Hot Working Technol., 2011, 40(18): 138(刘洪锋, 何明奕, 王胜民等. 热镀锌层钛盐钝化膜耐蚀性能的研究[J]. 热加工工艺, 2011, 40(18): 138)
[10] Meshalkin V P, Abrashov A A, Vagramyan T A, et al.Development of composition and study of properties of a new high-efficiency silicon-containing protective conversion coating on zinc-plated surfaces[J]. Dokl. Chem., 2017, 475: 196
[11] Liu S H, Liu X J, Latthe S S, et al.Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane[J]. Appl. Surf. Sci., 2015, 351: 897
[12] Sriramulu D, Reed E L, Annamalai M, et al.Synthesis and characterization of superhydrophobic, self-cleaning NIR-reflective silica nanoparticles[J]. Sci. Rep., 2016, 6: 35993
[13] Hu Y, Zhu Y J, Wang H Y, et al.Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation[J]. Chem. Eng. J., 2017, 322: 157
[14] Beshkar F, Khojasteh H, Salavati-Niasari M.Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation[J]. J. Colloid Interf. Sci., 2017, 497: 57
[15] Wilson M.Superhydrophobic surfaces reduce drag[J]. Phys. Today, 2009, 62: 16
[16] Wang H Y, Liu Z J, Wang E Q, et al.A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties[J]. Appl. Surf. Sci., 2015, 332: 518
[17] Xu W J, Song J L, Sun J, et al.Rapid fabrication of large-area, corrosion-resistant superhydrophobic mg alloy surfaces[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4404
[18] Mohamed A M A, Abdullah A M, Younan N A. Corrosion behavior of superhydrophobic surfaces: A review[J]. Arab. J. Chem., 2015, 8(6): 749
[19] Wu X H, Fu Q T, Kumar D, et al.Mechanically robust superhydrophobic and superoleophobic coatings derived by sol-gel method[J]. Mater. Des., 2016, 89: 1302
[20] Tadanaga K, Katata N, Minami T.Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method[J]. J. Am. Ceram. Soc., 1997, 80: 3213
[21] Lai D, Kong G, Che C S.Synthesis and corrosion behavior of ZnO/SiO2 nanorod-sub microtube superhydrophobic coating on zinc substrate[J]. Surf. Coat. Technol., 2017, 315: 509
[22] Wang Y H, Wang W, Zhong L, et al.Super-hydrophobic surface on pure magnesium substrate by wet chemical method[J]. Appl. Surf. Sci., 2010, 256: 3837
[23] Barshilia H C, Gupta N.Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar+O2 plasma etching process[J]. Vacuum, 2014, 99: 42
[24] Liu Y, Li S Y, Zhang J J, et al.Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition[J]. Chem. Eng. J., 2014, 248: 440
[25] Jiang L, Zhao Y, Zhai J.A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem. Int. Ed. Engl., 2004, 116: 4438
[26] Yuan Z Q, Xiao J Y, Zeng J C, et al.Facile method to prepare a novel honeycomb-like superhydrophobic Polydimethylsiloxan surface[J]. Surf. Coat. Technol., 2010, 205: 1947
[27] Dabalà M, Armelao L, Buchberger A, et al.Cerium-based conversion layers on aluminum alloys[J]. Appl. Surf. Sci., 2001, 172: 312
[28] Burroughs P, Hamnett A, Orchard A F, et al.Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. J. Chem. Soc., 1976, (17): 1686
[29] Chen Y.New synthesis methods of zinc phosphate and properties evaluation of phosphates in anti-corrosion coatings [D]. Nanning: Guangxi University for Nationalities, 2012(陈燕. 磷酸锌的合成新方法和防腐蚀涂料中磷酸盐的性能评价 [D]. 南宁: 广西民族大学, 2012)
[30] Bi H F, Li X.Hydrothermal synthesis of cerium phosphate micro/nanospheres [A]. The 7th China Conference on Functional Materials and Applications[C]. Changsha: CIS, 2010(毕会芳, 李霞. 磷酸铈微纳米球的水热合成 [A]. 第七届中国功能材料及其应用学术会议论文集[C]. 长沙: 中国仪器仪表学会, 2010)
[31] Peng S.Preparation of superhydrophobic/superamphiphobic surfaces and the investigations of their properties [D]. Guangzhou: South China University of Technology, 2015(彭珊. 超疏水/超双疏材料的制备及其性能研究 [D]. 广州: 华南理工大学, 2015)
[32] Liu T L, Chen Z Y, Kim C J.A dynamic Cassie-Baxter model[J]. Soft Matter, 2015, 11: 1589
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.