Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 955-960    DOI: 10.11901/1005.3093.2016.483
  研究论文 本期目录 | 过刊浏览 |
CeO2的微观结构对颗粒物催化氧化的影响
叶松, 孙平(), 刘军恒, 黄河
江苏大学汽车与交通工程学院 镇江 212013
Effect of Microstructure of CeO2 Particles on Catalyzing Oxidation of Diesel Particulate Matter
Song YE, Ping SUN(), Junheng LIU, He HUANG
School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

叶松, 孙平, 刘军恒, 黄河. CeO2的微观结构对颗粒物催化氧化的影响[J]. 材料研究学报, 2017, 31(12): 955-960.
Song YE, Ping SUN, Junheng LIU, He HUANG. Effect of Microstructure of CeO2 Particles on Catalyzing Oxidation of Diesel Particulate Matter[J]. Chinese Journal of Materials Research, 2017, 31(12): 955-960.

全文: PDF(2386 KB)   HTML
摘要: 

用沉淀法制备出三组CeO2,使用X-射线粉末衍射(XRD)、氮气吸附脱附、扫描电镜(SEM)、氢气程序升温还原(H2-TPR)等手段表征其微观结构及氧物种,并根据热重分析(TGA)评价其活性。结果表明:三组CeO2的亚晶尺寸分别为8 nm、11 nm和20 nm,对应的比表面积分别为89 m2/g、68 m2/g和63 m2/g,表面孔容孔径的变化趋势与比表面积一致。相比柴油机纯颗粒物,添加具有不同微观结构的CeO2能促进颗粒物中过渡态碳烟前驱体的氧化燃烧,干碳烟的失重起始温度依次降低了152℃、137℃和121℃,失重峰值温度降低了187℃、110℃和103℃,并且最大失重率增大。CeO2的微观结构对其氧空位的形成有较大影响,CeO2晶体的亚晶尺寸越小、比表面积越大在颗粒物氧化中表现出更高的活性.

关键词 无机非金属材料微观结构催化氧化物热重分析CeO2颗粒物    
Abstract

Three type of CeO2 particles was produced by precipitation method. Then the microstructure and oxygen species of CeO2 particles were characterized by means of XRD, nitrogen adsorption, SEM and H2-TPR. While their catalytic activity was evaluated by thermogravimetric analysis(TGA). Results show that the subgrain dimensions of the prepared three types of CeO2 are 8 nm, 11 nm and 20 nm and the corresponding BET surface areas are 89m2/g, 68m2/g and 63m2/grespectively. The pore volumes and diameters of CeO2 particles consistently changed with BET surface areas. In comparison with the plain diesel particulate matter (PM), the ones with addition of CeO2 particles could exhibited higher activity for the oxidation of transitional soot precursor within PM, correspondingly the temperature related with the initial mass-loss of dry soot decreased by 152℃、137℃ and 121℃ and the temperature of the mass-loss peak decreased by 187℃、110℃ and 103℃ respectively, meanwhile the peak mass-loss rate increased. The microstructure of CeO2 particles played a significant role in the formation of oxygen lattice vacancy. In general, CeO2 particles has smaller subgrain size and larger BET surface areas, thus will exhibited better catalytic activity for the oxidation of PM.

Key wordsinorganic non-metallic materials    micro-structure    catalyzing oxidation    thermogravimetric analysis    CeO2    particulate matter
收稿日期: 2016-08-15     
ZTFLH:  TB321  
基金资助:江苏省自然科学基金(BK20160538),江苏省高校自然科学研究重大项目(14KJA470001)
作者简介:

作者简介 叶 松,男,1992年生,硕士生

图1  CeO2样品的XRD图谱
图2  CeO2样品的SEM对比图像
Sample SBET/m2g-1 V/cm3g-1 D / nm
8 nm 89 0.19 15
11 nm 68 0.09 7.7
20 nm 63 0.07 5.9
表1  CeO2样品的比表面积、孔容及孔径
图3  CeO2样品的H2-TPR图谱
TSOF TPre Ti Tm
Pure particulate matter 200 / 500 600
20 nm 200 296 379 493
11 nm 199 303 363 490
8 nm 203 307 348 413
表2  柴油机颗粒失重特征参数
图4  不同微观结构CeO2与颗粒混合的TG、DTG曲线
[1] Zhang J, Ouyang Z Y, Miao H, et al.Characteristic comparative study of particulate matters in Beijing before and during the Olympics[J]. Environ. Sci., 2013, 34(7): 2512(张菊, 欧阳志云, 苗鸿等. 奥运前期与奥运期间北京市大气细颗粒物特征比较分析[J]. 环境科学, 2013, 34(7): 2512)
[2] Chang S Y, Wu Q W, Yang D X, et al.Combustion characteristics and dynamic analysis of diesel soot[J]. T.CSICE., 2009, 27(3):255(常仕英, 吴庆伟, 杨冬霞等. 柴油车碳烟的燃烧特性及动力学研究[J].内燃机学报, 2009, 27(3): 255)
[3] He H, Weng D, Zi X Y.Diesel emission control technologies: A review[J]. Environ. Sci., 2007, 28(6):1169(贺泓, 翁端, 资新运. 柴油车尾气排放污染控制技术综述[J]. 环境科学, 2007, 28(6): 1169)
[4] Mohr M, Forss A M, Lehmann U.Particle emissions from diesel passenger cars equipped with a particle trap in comparison to other technologies[J]. J. Environ.Sci.Technol., 2006, 40(7): 2375
[5] Bergmann M, Kirchner U, Vogt R, et al.On-road and laboratory investigation of low-level PM emissions of a modern diesel particulate filter equipped diesel passenger car[J]. Atmos. Environ., 2009, 43(11): 1908
[6] Tian L Q, Ye D Q.After-treatment technology of particulate matter from diesel vehicle exhaust[J]. Environ. Poll. Control Tech. Equip., 2003, 4(10): 74(田柳青, 叶代启. 柴油车排气颗粒物的后处理技术[J]. 环境污染治理技术与设备, 2003, 4(10): 74)
[7] Liang P, Zhang G Z, Wang J Q, et al.Latest progress in catalysts for the catalytic combustion of diesel soot particulates[J]. J. Chin. Environ. Eng., 2008, 2(5): 577(梁鹏, 张桂臻, 王季秋等. 柴油车尾气碳烟颗粒物催化燃烧催化剂的最新研究进展[J]. 环境工程学报, 2008, 2(5): 577)
[8] Xu P F.Optimized Control and Properties of cerium oxide micro-nanostructures[D]. Beijing: Universtiy of Science and Technology,2015(徐鹏飞. 氧化铈微纳结构的调控与性能研究[D]. 北京:北京科技大学, 2015)
[9] Benjaram M R, Ataullah K, Pandian L,et al.Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2, Catalysts by XRD, Raman, and Hrem techniques[J]. Cheminform, 2005, 36(22): 3355
[10] Dhakad M, Mitshuhashi T, Rayalu S, et al.Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation[J]. Catal. Today., 2008, 132(1): 188
[11] Kumar P A, Tanwar M D, Russo N, et al.Synthesis and catalytic properties of CeO2, and Co/CeO2, nanofibres for diesel soot combustion[J]. Catal. Today., 2012, 184(1): 279
[12] Liu S K, Sun P, Liu J H, et al.Ce-based fuel borne catalyst enhancing regenerative effect of diesel particulate filter[J]. Trans. CSAE., 2016, 32(1): 112(刘少康, 孙平, 刘军恒等. 铈基燃油催化剂改善柴油机颗粒物捕集器再生效果[J]. 农业工程学报, 2016, 32(1): 112)
[13] Jung H, Kittelson D B, Zachariah M R.The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation[J]. Combust. Flame., 2005, 142(3): 276
[14] Miró E E, Ravelli F, Ulla M A, et al.Catalytic combustion of diesel soot on Co, K supported catalysts[J]. Catal. Today., 1999, 53(53): 631
[15] Huo X F.Preparation and characterization of La1-xCexMn1-yCoyO3 for Catalytic Combustion of Soot[D]. Tian jing: Tianjing University, 2012(霍晓飞. La1-xCexMn1-yCoyO3系列钙钛矿型催化剂对柴油机颗粒物净化性能研究[D]. 天津大学, 2012)
[16] Qin J, Lu J, Cao M, et al.Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity.[J]. Nanoscale, 2010, 2(12): 2739
[17] He X W, Yu J J, Kang S F, et al.Catalytic combustion of soot on combined oxide catalysts[J]. Environ. Sci., 2005, 26(1): 28(何绪文, 於俊杰, 康守方等. 复合氧化物催化材料上碳颗粒物的催化燃烧[J]. 环境科学, 2005, 26(1): 28)
[18] Wang H Y, Chen M, Wu Z K, et al.Dispersion behavior of CeO2 nano-particles in ethanol-water mixed Solution[J]. Rare. Earths., 2014, (3): 64(王宏宇, 程满, 吴志奎等. 纳米氧化铈在醇水混合溶液中的分散行为[J]. 稀土, 2014, (3): 64)
[19] Li J C, Wu T Y.The relationship between imperfection and production process of WC powder[J]. Journal of Central South Institute of Mining and Metallurgy, 1986, (04): 54(李健纯, 吴惕言. 碳化钨粉末的微观结构与工艺参数的关系[J]. 中南矿冶学院学报, 1986, (04): 54)
[20] Guo J L, Li C Y, Hu C F, et al.Structural features of reactive oxygen species, Cerium oxide nanoparticles and their application prospects[J]. Chem.Bull., 2014, 77(2): 146(郭金玲, 李常燕, 胡长峰等. 活性氧和纳米氧化铈的结构特征及其应用前景[J]. 化学通报, 2014, 77(2): 146)
[21] Xu M, Wang L.Value analysis and teaching strategies of effective collision theory to promote the development of students' cognition[J]. Chem. Edu., 2013, 34(1): 6(徐敏, 王磊. 有效碰撞理论对促进学生认识发展的价值分析及其教学策略[J]. 化学教育, 2013, 34(1): 6)
[22] Hong Y X, Liang H, Li S H, et al.Influence of potassium doping into Ce0.7Zr0.3O2 solid solution on active oxygen[J]. J. Chin. Rare. Earths., 2012, 30(4): 429(洪燕霞, 梁红, 李树华等. 钾元素掺杂对铈锆固溶体中氧物种的影响[J]. 中国稀土学报, 2012, 30(4): 429)
[23] Lu G Z, Wang R.TPR research of surface oxygen species for cerium oxide, cupric oxide[J]. Chem Bull., 1993, (10): 35(卢冠忠, 汪仁. 氧化铈, 氧化铜表面氧种的TPR研究[J]. 化学通报, 1993, (10): 35)
[24] Li L, Wang J X, Xiao J H, et al.Particulate emission characteristics of vehicle diesel engine fuelled with palm-oil derived biodiesel[J].Chin. Environ. Sci., 2014, 34(10): 2458(李莉, 王建昕, 肖建华等. 车用柴油机燃用棕榈生物柴油的颗粒物排放特性研究[J]. 中国环境科学, 2014, 34(10): 2458)
[25] Mei D Q, Zhao X, Wang S L, et al.Thermogravimetric characteristics and thermokinetic analysis on PM emission of diesel rngine with catalyst[J]. Chin. Intern. Combust .Engine. Eng., 2013, (S1): 37(梅德清, 赵翔, 王书龙等. 柴油机颗粒物催化状态热重特性及热动力学分析[J]. 内燃机工程, 2013(S1): 37)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.