Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 901-908    DOI: 10.11901/1005.3093.2017.317
  研究论文 本期目录 | 过刊浏览 |
新型膨胀阻燃聚丙烯复合材料的协同效应
董翔1,2, 刘泽功1,2(), 聂士斌1,2, 张弛1,2, 周灿1,2, 吴伟1,2
1 安徽理工大学能源与安全学院 淮南 232001
2 煤矿安全高效开采省部共建教育部重点实验室 淮南 232001
Synergistic Effects of Novel Intumescent Flame Retardant Polypropylene Composites
Xiang DONG1,2, Zegong LIU1,2(), Shibin NIE1,2, Chi ZHANG1,2, Can ZHOU1,2, Wei WU1,2
1 School of Energy Resources and Safety, Anhui University of Science and Technology, Huainan 232001, China
2. Key Laboratory of Safe and Effective Coal Mining of Ministry of Education, Huainan 232001, China
引用本文:

董翔, 刘泽功, 聂士斌, 张弛, 周灿, 吴伟. 新型膨胀阻燃聚丙烯复合材料的协同效应[J]. 材料研究学报, 2017, 31(12): 901-908.
Xiang DONG, Zegong LIU, Shibin NIE, Chi ZHANG, Can ZHOU, Wei WU. Synergistic Effects of Novel Intumescent Flame Retardant Polypropylene Composites[J]. Chinese Journal of Materials Research, 2017, 31(12): 901-908.

全文: PDF(2205 KB)   HTML
摘要: 

基于膨胀阻燃与协效阻燃相结合的技术制备了含协效剂的新型膨胀阻燃聚丙烯(PP)复合材料,其中的新型膨胀阻燃剂由硅凝胶包裹聚磷酸铵(OS-MCAPP)和三羟乙基异氰尿酸酯(THEIC)组成,协效剂为多孔磷酸镍(VSB-1)或磷酸镍纳米管(NiPO-NT)。结果表明,当VSB-1和NiPO-NT的添加量(质量分数)分别为4.0%和3.0%时复合材料的极限氧指数可达到最大值34.2,其最大热释放速率比不含协效剂时分别降低了40.7%和38.1%,表现出高效的阻燃协效性。同时,含有VSB-1和NiPO-NT阻燃PP复合材料的热稳定性显著提高,700℃时的残余质量比不含协效剂时分别提高了207%和239%。

关键词 复合材料协效剂膨胀阻燃聚丙烯    
Abstract

Novel intumescent flame retarding polypropylene based composites were synthesized with silica-gel microencapsulated ammonium polyphosphate (OS-MCAPP) and tris (2-hydrooxyethyl) isocyanurate (THEIC) as intumescent flame retardants, while porous nickel phosphate (VSB-1) or nickel phosphate nanotubes (NiPO-NT) as synergist agent. Results show that with the addition of 4.0% VSB-1 or 3.0% NiPO-NT (in mass fraction), the composites show the optimal LOI value of 34.2, while the peak heat release rate reduced respectively by 40.7% and 38.1% in comparison with that of the composite without synergist. Moreover, these two composites show better thermal stability at 700℃ with residue mass of 207% and 239%, respectively, higher than that of the composite without synergist.

Key wordscomposite    synergist    intumscent flame retardant    polypropylene
收稿日期: 2017-05-15     
ZTFLH:  TQ325  
基金资助:国家自然科学基金(51474009)
作者简介:

作者简介 董 翔,男,1989年生,博士生

Sample PP OS-MCAPP THEIC VSB-1 NiPO-NT
PP0 100
PP1 70 22.5 7.5
PP2 70 21.75 7.25 1.0
PP3 70 21 7 2.0
PP4 70 20.25 6.75 3.0
PP5 70 19.5 6.5 4.0
PP6 70 18.75 6.25 5.0
PP7 70 21.75 7.25 1.0
PP8 70 21 7 2.0
PP9 70 20.25 6.75 3.0
PP10 70 19.5 6.5 4.0
PP11 70 18.75 6.25 5.0
表1  PP/IFR/协效剂复合材料的配比
图1  新型PP/IFR复合材料的LOI值(x%协效剂,30-x%IFR)
图2  PP0、PP1、PP5和PP9的HRR和THR曲线
图3  PP0、PP1、PP5和PP9的SPR和TSP曲线
图4  PP0、PP1、PP5和PP9的CO2释放率和CO释放率曲线
图5  PP0、PP1、PP5和PP9在氮气气氛中的TG和DTG曲线
图6  PP1、PP5和PP9的炭层SEM照片
图7  PP1、PP5和PP9的XPS图谱
Sample C1s P2p N1s O1s Ni2p
PP1 78.92 4.21 2.12 14.75
PP5 55.9 8.89 4.69 29.76 0.75
PP9 63.36 8.04 3.88 24.0 0.72
表2  残炭中部分元素的含量
图8  VSB-1、NiPO-NT在新型PP/IFR复合材料中的主要协效机理
[1] Wang Z J, Liu Y F, Li J.Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites[J]. Acs. Sustain. Chem. Eng., 2017, 5(3): 2375
[2] Tang W F, Zhang S, Sun J, et al.Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite[J]. Thermochim. Acta., 2017, 1: 648
[3] Wang P J, Hu X P, Liao D J, et al.Dual fire retardant action: the combined gas and condensed phase effects of azo-modified NiZnAl layered double hydroxide on intumescent polypropylene[J]. Ind. Eng. Chem. Res., 2017, 65(4): 920
[4] Tang W F, Song L X, Zhang S, et al.Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite[J]. J. Mater. Sci., 2017, 52(1): 208
[5] Wang C L, Ding P, Li J.Effect of hierarchically porous char on intumescent flame retardant polypropylene[J]. Acta. Polym. Sin., 2016, 1: 1594
[6] Li X Y, Tang S W, Zhou X Q, et al.Synergistic effect of amino silane functional montmorillonite on intumescent flame-retarded SEBS and its mechanism[J]. J. Appl. Polym. Sci., 2017, 134(24): 44953
[7] Yan H Q, Li N N, Fang Z Q, et al.Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flameretardant ramie fabrics[J]. J. Appl. Polym. Sci., 2017, 134(20): 44795
[8] Chen Y J, Wang W, Liu Z Q, et al.Synthesis of a novel flame retardant containing phosphazene and triazine groups and its enhanced charring effect in poly(lactic acid) resin[J]. J. Appl. Polym. Sci., 2017, 134(13): 44660
[9] Guo Y C, Chang C C, Halada G, et al.Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing[J]. Polym. Degrad. Stabil., 2017, 137: 205
[10] Zhang P K, He Y Z, Tian S Q, et al.Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous-nitrogen intumescent flame retardant[J]. Polym. Composite., 2017, 38(3): 452
[11] Liao S F, Deng C, Huang S C, et al.An efficient halogen-free flame retardant for polyethylene: piperazine-modified ammonium polyphosphates with different structures[J]. Chinese. J. Polym. Sci., 2016, 34(11): 1339
[12] Deng C L, Deng C, Zhao J, et al.Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP[J]. Chinese. J. Polym. Sci., 2015, 33(2): 203
[13] Jiang Z W, Liu G S.Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris(2-hydroxyethyl)isocyanurate resin and its flame retardancy in polypropylene[J]. Rsc. Advances., 2015, 5(107): 88445
[14] Wang B B, Hu shuang, Zhao K M, et al. Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate[J]. Ind. Egn. Chem. Res., 2011, 50(20): 11476
[15] Nie S B, Zhang C, Peng C, et al.Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites[J]. J. Spectorsc., 2015: 289298
[16] Wen P Y, Wang X F, Wang B B, et al.One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene[J]. Polym. Degrad. Stabil., 2014, 110: 165
[17] Su X Q, Yi Y W, Tao J, et al.Synergistic effect between a novel triazine charring agent and ammonium polyphosphate onflame retardancy and thermal behavior of polypropylene[J]. Polym. Degrad. Stabil., 2014, 105: 12
[18] Ni J X, Chen L J, Zhao K M, et al.Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites[J]. Polym. Adv. Technol., 2011, 22:1824
[19] Yuan S S, Chen W Y, Liu G S.Effects of two kinds of THEIC-based charring agents on flame-retardant properties of polylactide[J]. J. Appl. Polym. Olym. Sci., 2015, 132: 42086
[20] Feng G D, Hu Y, Jia P Y, et al.Influence of a nitrogen-containing oil-based plasticizer on mechanical, thermal stability and fire performance of plasticized poly(vinyl chloride) and study of its mechanism of flame retardancy with Py-GC/MS[J]. Ind. Crop. Rpod., 2015, 77: 883
[21] Pathak R, Kathalewar M, Wazarkar K, et al.Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications[J]. Prog. Org. Coat., 2015, 89:160
[22] Chen S F, Zhang D H, Cheng X J, et al.Preparation and characterization of a novel hyperbranched polyphosphate ester[J]. Mater. Chem. Phys., 2012, 137(1): 154
[23] Zhang J H, Chen S F, Zhang D H, et al.Hyperbranched polyphosphate ester/diglycidyl ether of bisphenol-a epoxy hybrid resin: preparation, curing, and thermal degradation kinetics[J]. J. Polym. Mater., 2015, 32(2): 127
[24] Gao S, Zhang X, Liu G S.Synthesis of tris(2-hydroxyethyl) isocyanurate homopolymer and its application in intumescentflame retarded polypropylene[J]. J. Appl. Polym. Sci., 2017, 134(13): 44663
[25] Chen W Y, Yuan S S, Sheng Y, et al.Effect of charring agent THEIC on flame retardant properties of polypropylene[J]. J. Appl. Polym. Olym Sci., 2015, 132: 41214
[26] Liu H, Zhong Q, Kong Q H, et al.Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system[J]. J. Therm. Anal. Calorim., 2014, 117: 693
[27] Ye L, Zhang Y J, Wang S H, et al.Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene[J]. J. Therm. Anal. Calorim., 2014, 117: 1065
[28] Li X, Yang B.Synergistic effects of pentaerythritol phosphate nickel salt (PPNS) with ammonium polyphosphate in flame retardant of polyethylene[J]. J. Therm. Anal. Calorim., 2015, 112: 359
[29] Zhou K Q, Wang B B, Jiang S H, et al.Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene-vinyl acetate copolymer[J]. Ind. Eng. Chem. Res., 2013, 52: 6303
[30] Nie S B, Hu Y, Song L, et al.Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene[J]. Polym. Adv. Technol., 2008, 19: 489
[31] Dong X, Nie S B, Liu Z G, et al.Study of the synergistic effect of nickel phosphate nanotubes (NiPO-NT) on intumescent flame retardant polypropylene composites[J]. J. Therm. Anal. Calorim., 2016,126(3): 1323
[32] Chen X L, Jiang Y F, Liu J B, et al.Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate[J]. J. Therm. Anal. Calorim., 2015, 120: 1493
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.