Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 781-788    DOI: 10.11901/1005.3093.2016.711
  研究论文 本期目录 | 过刊浏览 |
Mg和Si含量对一种低频电磁铸造新型高强Al-Mg-Si-Cu合金组织性能的影响
蒙毅1(), 崔建忠2, 赵志浩2, 朱远志1
1 北方工业大学机械与材料工程学院 北京 100144
2 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
Effect of Mg- and Si-content on Microstructure and Mechanical Properties of a New High Strength Al-Mg-Si-Cu Alloy Prepared by Low Frequency Electromagnetic Casting
Yi MENG1(), Jianzhong CUI2, Zhihao ZHAO2, Yuanzhi ZHU1
1 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

蒙毅, 崔建忠, 赵志浩, 朱远志. Mg和Si含量对一种低频电磁铸造新型高强Al-Mg-Si-Cu合金组织性能的影响[J]. 材料研究学报, 2017, 31(10): 781-788.
Yi MENG, Jianzhong CUI, Zhihao ZHAO, Yuanzhi ZHU. Effect of Mg- and Si-content on Microstructure and Mechanical Properties of a New High Strength Al-Mg-Si-Cu Alloy Prepared by Low Frequency Electromagnetic Casting[J]. Chinese Journal of Materials Research, 2017, 31(10): 781-788.

全文: PDF(1212 KB)   HTML
摘要: 

结合金相组织观察及能谱分析、DSC热差分析、JMat Pro 5.0软件计算和室温力学性能测试,研究低频电磁铸造新型高强Al-Mg-Si-Cu合金铸态、挤压态和T6态的组织性能。结果表明,该新型合金系的均匀化温度和固溶温度可分别确定为540℃和550℃。Mg2Si强化相能显著细化合金铸态组织且细化程度随其含量增大递增,而过量Si或过量Mg均能减弱细化剂和Mg2Si相对合金铸态组织的细化作用。Mg的过量添加不会降低合金强度但可提高其延伸率至19%以上。该新型Al-Mg-Si-Cu合金中,当Mg质量分数为1.60%、Si质量分数为1.15%时,可获得较高强度(抗拉强度419 MPa、屈服强度362 MPa)而又不损害其塑性(延伸率18.75%)。

关键词 金属材料强韧性高强铝合金显微组织    
Abstract

The microstructure and mechanical properties of a new high strength Al-Mg-Si-Cu alloy prepared by low frequency electromagnetic casting (LFEC) alloy were studied by using optical microscope, energy dispersive spectroscopy (EDS), DSC analysis, JMat Pro 5.0 software and mechanical tests at room temperature. The results show that the temperatures of homogenization and solid solution for the alloy can be identified as 540℃ and 550℃ respectively. Mg2Si phase could refine the as-cast grain size obviously and its effect on the as-cast grain refinement increases with the increase of Mg2Si content in the alloy. While, the refining effect of Mg2Si and other grain refiners on the grain sizes of ingots will be reduced by the excess of Mg or Si. However, the excess of Mg content in the alloy increases the elongation to more than 19% without reducing its strength. With the addition of 1.60% (mass fraction) Mg and 1.15% (mass fraction) Si to the Al-Mg-Si-Cu alloy exihibits higher strength (ultimate tensile strength 419 MPa and yield strength 362 MPa respectively) with undiminished ductility (elongation 18.75%).

Key wordsmetallic materials    strength and ductility    high strength aluminum alloy    microstructure
收稿日期: 2016-10-08     
ZTFLH:  TG146.2  
基金资助:北京市优秀人才培养资助青年骨干个人项目(2015000020124G023)、北方工业大学“优秀青年教师培养计划”(XN072-017)和北方工业大学科研启动基金(1100000156041-2015)
作者简介:

作者简介 蒙 毅,男,1985年生,讲师,博士生

Alloys Mg/Si Si Mg Cu Cr V Ti
A >1.73 (2.32Mg2Si+0.13Mg) Nominal 0.85 1.60 1.00 0.15 0.15 0.03
Analyzed 0.84 1.55 1.05 0.15 0.15 0.03
B =1.73 (2.32Mg2Si) Nominal 0.85 1.40 1.00 0.15 0.15 0.03
Analyzed 0.85 1.37 1.06 0.15 0.15 0.03
C <1.73 (2.05Mg2Si+0.40Si) Nominal 1.15 1.30 1.00 0.15 0.15 0.03
Analyzed 1.20 1.23 1.04 0.17 0.14 0.03
D <1.73 (2.29Mg2Si+0.31Si) Nominal 1.15 1.45 1.0 0.15 0.15 0.03
Analyzed 1.21 1.48 1.06 0.16 0.15 0.03
E <1.73 (2.53Mg2Si+0.22Si) Nominal 1.15 1.60 1.00 0.15 0.15 0.03
Analyzed 1.18 1.58 1.03 0.17 0.15 0.03
表1  研究合金A~E化学成分
Casting
method
Casting temperature
/℃
Casting speed
/mmmin-1
Flow rate of cooling water/Lmin-1 Frequency of electromagnetic
field /Hz
Current intensity/A
LFEC 750 110 50~80 15 120
表2  铸造参数
图1  合金A~E的JMat Pro 5.0软件计算结果
图2  合金E均匀化前铸锭DSC曲线
图3  合金E铸态扫描电镜组织与能谱分析结果
图4  合金A~E铸锭心部阳极覆膜组织
图5  由图4获得的合金A~E铸态平均晶粒尺寸
图6  合金A~E挤压态试样纵向腐蚀金相组织
图7  合金A~E的T6态棒材纵向腐蚀金相组织
图8  合金A~E挤压棒材T6热处理前后力学性能结果
[1] Gupta A K, Lloyd D J.Study of precipitation kinetics in a super purity Al-0.8%Mg-0.9%Si alloy using differential scanning calorimetry[J]. Metall. Mater. Trans. A, 1999, 30: 879
[2] Hirose A, Todaka H, Yamaoka H, et al.Quantitative evaluation of softened regions in weld heat-affected zones of 6061-T6 aluminum alloy-characterizing of the laser beamwelding process[J]. Metall. Mater. Trans. A, 1999, 30: 2115
[3] Eskin D G, Massardier V, Merle P.A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon[J]. J. Mater. Sci., 1999, 3: 820
[4] Zhang J X, Gao A H, Chen H.Influence of alloying element on microstructure and property of Al-Mg-Si aluminum alloy[J]. Foundry Tech., 2007, 28(3): 373(张建新, 高爱华, 陈昊. 合金元素对Al-Mg-Si系铝合金组织及性能的影响[J]. 铸造技术, 2007, 28(3): 373)
[5] Yang W C.Age-hardening behavior and microsturetural characterization of precipitates in Al-Mg-Si-Cu:6005A alloy [D]. Changsha: Central South University, 2011(杨文超. Al-Mg-Si-Cu系6005A合金的时效硬化行为及析出相的微观结构表征[D]. 长沙: 中南大学, 2011))
[6] Gao Y J, Wang Q S, Wang N.Atomic bonding and strengthening effection of GP zones in Al-Mg-Si alloy[J]. Mining Metall. Eng., 2006, 5: 90(高英俊, 王庆松, 王娜. Al-Mg-Si合金GP区的原子键络与强化作用[J]. 矿冶工程, 2006, 5: 90)
[7] Andersen S J, Marioara C D, Froseth A, et al.Crystalstructure of precipitate in the Al-Mg-Si alloy system and its relate to the phase[J]. Mater. Sci. Eng. A, 2005, 390: 129
[8] Zhang H T, Nagaumi H, Zuo Y B.Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys Part 1: development of mathematical model and comparison with experimental results[J]. Mater. Sci. Eng. A, 2007, 448: 189
[9] Zuo Y B, Cui J Z, Zhao Z H, et al.Mechanism of grain refinement of an Al-Zn-Mg-Cu alloy prepared by low-frequency electromagnetic casting[J]. J. Mater. Sci., 2012, 47: 5501
[10] Liu M P, Wei J T, Li Y C, et al.Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminium alloy induced by equal channel angular pressing[J]. Chinese J. Mater. Res., 2016, 30(10): 722(刘满平, 韦江涛, 李毅超等. 等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能[J]. 材料研究学报, 2016, 30(10): 722)
[11] Bergsma S C.Strengthening in the new aluminum alloy AA6069[J]. Mater. Sci. Eng. A, 1998, 254: 112
[12] Bergsma S C, Kassner M E, Li X.The optimized mechanical properties of the new aluminum alloy AA6069[J]. J. Mater. Eng. Perform., 1996, 5: 111
[13] Bergsma S C, Kassner M E. The new aluminum alloy AA6069[J]. Mater. Sci. Forum, 1996, 217-222: 1801
[14] Li H L, Yuan X G, Wu M F, et al.As-cast microstructure of Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr alloy[J]. Foundry, 2014, 63(3): 211(李赫亮, 袁晓光, 吴明富等. Al-0.8Mg-1.0Si-0.8Cu-0.3Mn-0.5Fe-0.15Zr合金铸态组织研究[J]. 铸造, 2014, 63(3): 211)
[15] Matsuda K, Uetani Y, Sato T, et al.Metastable phases in an Al-Mg-Si alloy containing copper[J]. Metall. Mater. Trans. A, 2001, 32: 1293
[16] Liu H, Zhao G, Liu C M, et al.Phase constituents of some kinds of 6000-series aluminium alloys for automotive body sheets[J]. J. Northeastern Univ.(Nat. Sci.), 2005, 26(11): 1070(刘宏, 赵刚, 刘春明等. 几种6000系汽车板铝合金的结晶相[J]. 东北大学学报(自然科学版), 2005, 26(11): 1070)
[17] Meng Y, Cui J Z, Zhao Z H, et al.Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series[J]. J. Alloys Comp., 2013, 573: 102
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.