Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 662-668    DOI: 10.11901/1005.3093.2015.729
  研究论文 本期目录 | 过刊浏览 |
液相烧结工艺制备高钒钢*
李志华,肖平安,张霞,卢瑞青,刘海彬,顾景洪
湖南大学材料科学与工程学院 长沙 410082
Fabrication of a High Vanadium High Speed Steel by Liquid Phase Sintering
Zhihua LI,Ping'an XIAO,Xia ZHANG,Ruiqing LU,Haibin LIU,Jinghong GU
School of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

李志华,肖平安,张霞,卢瑞青,刘海彬,顾景洪. 液相烧结工艺制备高钒钢*[J]. 材料研究学报, 2016, 30(9): 662-668.
Zhihua LI, Ping'an XIAO, Xia ZHANG, Ruiqing LU, Haibin LIU, Jinghong GU. Fabrication of a High Vanadium High Speed Steel by Liquid Phase Sintering[J]. Chinese Journal of Materials Research, 2016, 30(9): 662-668.

全文: PDF(6198 KB)   HTML
摘要: 

采用气雾化粉末+压制+超固相液相烧结(SLPS)工艺制备钒含量(质量分数)约为10%的高钒钢, 研究了烧结工艺对致密化行为、显微组织演变、相构成与分布和力学性能的影响规律。结果表明, 烧结温度的影响最全面, 保温时间主要影响碳化物的析出量。烧结高钒钢的基体为针状M和少量残余γ, 在基体中有VC、复合型碳化钼和碳化铬等碳化物, VC大多呈球形, 分布在晶界和晶粒内部。随着烧结温度的提高和保温时间的延长, 晶粒和碳化物逐渐粗化, 各类碳化物的析出越来越充分, 而复合型碳化物的析出对高钒钢的强度和冲击韧性有不利影响。烧结高钒钢具有优秀的综合力学性能: 硬度HRC 65-68, 冲击韧性高于6 J/cm2, 抗弯强度高于1800 MPa。

关键词 金属材料高钒钢超固相液相烧结力学性能碳化物    
Abstract

High speed steels with high V content (HVHSS, 10 mass % of V) were fabricated by a process of pressing plus super solid-liquid phase sintering (SLPS) with atomized alloy powder as raw material. The effect of sintering parameters such as sintering temperature and holding time on densification, microstructure evolution as well as mechanical properties were systematically investigated, and the composition, morphology and distribution of the phases existed in the alloy were carefully analyzed. The results show that sintering temperature is the most important parameter affecting the performance of the sintered alloys, however holding time shows the main effect on the precipitation and evolution of carbides. The matrix of the as prepared HVHSS consists of acicular martensite and retained austensite, and there are three types of carbides, i.e. VC, complex molybdenum carbide and complex chromium carbide. Small spherical VC particles mainly distribute in the grains and along their boundaries. As sintering temperature and holding time increased, not only grains and carbides gradually coarsened but also more and more carbides precipitated. However, the precipitation of complex carbides deteriorates the alloy’s strength and toughness due to their poor morphology which cause serious stress concentration or forming carbide network along grain boundaries. The HVHSS possess high performance, such as hardness HRC 65-68, impact toughness and bending strength over 6 J/cm2 and 1800 MPa respectively.

Key wordsmetallic materials    HVHSS    SLPS    mechanical properties    carbide
收稿日期: 2015-12-15     
基金资助:* 国家自然科学基金资助项目51574119
图1  N2气雾化高钒钢粉末的形貌
图2  烧结温度对高钒钢密度和硬度的影响(保温时间2 h)
图3  保温时间对高钒钢密度和硬度的影响
图4  烧结温度对高钒钢显微组织的影响
图5  不同烧结温度高钒钢样品的XRD图谱
图6  烧结温度对晶粒和碳化物尺寸的影响
图7  保温时间对显微组织的影响
图8  保温时间对晶粒尺寸和碳化物尺寸的影响
图9  粉末冶金高钒钢的背散射图像
Test point of EDS C V Cr Mo Cu Bal.
A 54.50 40.35 3.01 1.31 -- 0.83
B 19.86 1.25 4.79 0.51 1.22 72.37
C 55.75 34.31 4.47 1.65 -- 3.82
D 46.92 17.26 14.12 1.54 -- 20.15
E 43.92 6.76 17.98 1.21 0.43 29.70
表1  微区成分能谱分析结果
图10  烧结温度对冲击韧性和抗弯强度的影响
[1] K. C. Hwang, S. Lee, C. L. Hui, Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls partI: microstructural analysis, Materials Science & Engineering A, 254(1), 282(1998)
[2] LONG Yue, WEI Shizhong, LIU Yaming, Microstructure and properties of high vanadium high wear-resistant alloy, Mining Machine, 12, 54(2001)
[2] (龙锐, 魏世忠, 刘亚民, 高钒高耐磨合金的组织与性能, 矿山机械, 12, 54(2001))
[3] WEI Shizhong, LONG Yue, Development and use of high vanadium high wear-resistant alloy hammer, Cement, 8, 31(2001)
[3] (魏世忠, 龙锐, 高钒高耐磨合金锤头的研制与使用, 水泥, 8, 31(2001))
[4] G. Q. Shao, The preparation of Co WO/WO3 nanocomposite powder , Journal of Wuhan University of Technology, Mater. Sci. Ed., 19, 1(2004)
[5] T. Tanata, H. Takigawa, M. Hashimoto, The application and performance of high-speed-steel (HSS) rolls at hot rolling, 39th Mechanical Working and Steel Processing Conference Proceedings, Vol. XXXV, 435(1997)
[6] M. Hashimoto, T. Kawakami, R. Kurashashi,Characteristics and application of high-speed tool steel(HSS) rolls in hot strip rolling, ISS-AIME, 74, 55(1995)
[7] Y. M. Kuskov, High-alloy high speed steels for rollers, STAL, 1(4), 43(2004)
[8] A. A. Kvnonov, N. S. Salmanov, M. N. Salmanov, Cast high-vanadium high-speed steel, Litejnoe Proizvodstvo, 1(2), 5(2001)
[9] LIU Sha, HUANG Zelan, LIU Gang, Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling, International Journal of Refractory Metals&Hard Materials, 13, 1(2005)
[10] HUANG Peiyun, Principle of Powder Metallurgy (Beijing, Metallurgical Industry Press, 1982)p.188
[10] (黄培云, 粉末冶金原理(北京, 冶金工业出版社, 1982)p.188)
[11] FAN Jinglian, HUANG Boyun, Densification mechanism of liquid phase sintered tungsten heavy alloy during initial solid stage sintering stage, The Chinese Journal of Nonferrous Metals, 8(A01), 36(1998)
[11] (范景莲, 黄伯云, 液相烧结高比重合金早期固相烧结阶段的致密化机理, 中国有色金属学报, 8(A01), 36(1998))
[12] JIA Yuze, YANG Maosheng, ZHOU Xiaolong, Effect of tempering temperature on the evolution of carbide and hardness of high-nitrogen bearing steel, Iron and Steel, 50(6), 81(2015)
[12] (贾钰泽, 杨卯生, 周晓龙, 回火温度对高氮轴承钢碳化物演变及硬度的影响, 钢铁, 50(06), 81(2015))
[13] FAN Yunying, ZHANG Yingjie, LUO Shaolin, Transformation of electrodeposited Fe-P amorphous coatings during process of heat-treatment, Transactions of Materials and Heat Treatment, 29(4), 140(2008)
[13] (范云鹰, 张英杰, 罗少林, 电沉积Fe-P 非晶镀层的受热转变, 材料热处理学报, 29(4), 140(2008))
[14] HUANG Yongbing, WANG Yongxin, CHEN Zheng, Phase field simulation of the second phase particle precipitation at boundaries and its pinning effect, Rare Metal Materials and Engeering, 41(10), 1751(2012)
[14] (黄勇兵, 王永欣, 陈铮, 相场法模拟第二相颗粒沿晶析出及其钉扎作用, 稀有金属材料与工程, 41(10), 1751(2012))
[15] WANG Panxin, Powder Metallurgy (Beijing, Metallurgical Industry Press, 2005)p.190
[15] (王盘鑫, 粉末冶金学(北京, 冶金工业出版社, 2005)p.190)
[16] Ministry of Metallurgical Industry Iron and Steel Institute, Steel Handbook (Beijing, China Industry Press, 1971)p.96
[16] (冶金工业部钢铁研究总院, 合金钢手册(北京, 中国工业出版社, 1971)p.96)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.