Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 503-508    DOI: 10.11901/1005.3093.2015.162
  本期目录 | 过刊浏览 |
基体性能对复合材料热残余应力的影响*
娄菊红1,2(), 杨延清2
1. 太原工业学院机械工程系 太原 0300082. 西北工业大学材料学院 西安 710072
Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities
LOU Juhong1,2,*(), YANG Yanqing2
1. department of Mechanical engineering, Taiyuan Institute of Technology, Taiyuan 030008, China2. School of Materials, Northwestern Polytechnical University, Xi’an 710072, China
引用本文:

娄菊红, 杨延清. 基体性能对复合材料热残余应力的影响*[J]. 材料研究学报, 2016, 30(7): 503-508.
Juhong LOU, Yanqing YANG. Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities[J]. Chinese Journal of Materials Research, 2016, 30(7): 503-508.

全文: PDF(1213 KB)   HTML
摘要: 

采用ANSYS有限元法建立三维模型, 研究了基体热膨胀系数和弹性模量对复合材料界面径向、轴向和周向残余应力大小和分布的影响。结果表明, 界面残余应力的改变量均与基体热膨胀系数的改变量成正比, 且随着基体热膨胀系数的减小界面周向残余应力沿着纤维周向分布的不均匀性减弱; 界面残余应力变化的总趋势是随着基体弹性模量的增大而增大, 但是增加的幅度不断减小。

关键词 复合材料热残余应力有限元法基体性能    
Abstract

The magnitude and distribution of the interfacial stresses along the radial-, axial- and circumferential directions at fiber side of fiber reinforced composites SiCf / Ti-6Al-4V with the change of thermal expansion coefficient and elasticity modulus of the matrix are analysed by three-dimensional model established by using finite element method. The results show that the change of interfacial residual stress is proportional to that of thermal expansion coefficient of matrix, and the no-uniformity of distribution of the residual stress along the circumferential direction of fiber decreases with the decrease of thermal expansion coefficient. In addition, interfacial residual stress usually increases with the increase of elasticity modulus of matrix, but the increase of which reduces gradually.

Key wordscomposites    thermal residual stress    finite element method    matrix properties
收稿日期: 2015-06-05     
基金资助:* 国家自然科学基金51271147资助项目
作者简介: null

本文联系人: 娄菊红

T(℃) α1 α2 α3 α4
20 8.8 7.04 5.28 3.52
200 9.4 7.52 5.64 3.76
400 10.3 8.24 6.18 4.12
600 10.8 8.64 6.48 4.32
800 11.5 9.2 6.9 4.6
表1  Ti-6Al-4V基体热膨胀系数的原始值及变化值(10-6/℃)
T(℃) E1 E2 E3 E4
20 114.0 228.0 342 456
200 103.8 207.6 311.4 415.2
400 92.6 185.3 277.8 370.4
600 76.4 152.8 229.2 305.6
800 62.8 125.6 188.4 251.2
表2  Ti-6Al-4V基体弹性模量的原始值及变化值(GPa)
T(℃) E(GPa) ν α(10-6/℃)
All temperature 402 0.25 4.0
表3  国产SiC纤维的性能
图1  三种纤维排布方式的二维截面示意图(单位: mm)
图2  不同纤维排布方式的有限元模型
图3  不同基体热膨胀系数下纤维一侧界面残余应力的分布
图4  不同基体弹性模量下纤维一侧界面残余应力的分布
1 YUAN Meini, YANG Yanqing, LUO Xian, ZHANG Rongjun, Microstress distribution of titanium matrix composites, Chinese Journal of material research, 22(4), 389(2008)
1 (原梅妮, 杨延清, 罗贤, 张荣军, 钛基复合材料中的微区应力分布, 材料研究学报, 22(4), 389(2008))
doi:
2 D. B. Miracle, Metal matrix composites-From science to technological significance, Composites Science and Technology, 65, 2526(2005)
doi: 10.1016/j.compscitech.2005.05.027
3 Y. Q. Yang, Y. Zhu, Y. Chen, Q. G. Zhang, J.M. Zhang, Processing and property of SiC fiber reinforced Ti-matrix composite, Rare Metal Materials and Engineering, 31, 201(2002)
doi: 10.1002/pip.421
4 HU Hengzhi, Challenge and development trends to future aero-engine materials, Journal of aeronautical materials, 18(4), 52(1998)
4 (傅恒志, 未来航空发动机材料面临的挑战与发展趋向, 航空材料学报, 18(4), 52(1998) )
5 M. Kuntz, B. Meier, G. Grathwohl, Residual Stresses in Fiber-Reinforced Ceramics due to Thermal Expansion Mismatch, Journal of the American Ceramic Society, 76(10), 2607(1993)
doi: 10.1111/j.1151-2916.1993.tb03988.x
6 Ma Zhi-jun, Yang Yan-qing, Zhu Yan, Chen Yan, Effect of fiber distribution on residual thermal stress in titanium matrix composite, Trans. Nonferrous Met. Soc. China, 14(2), 330(2004)
7 S. W. Warrier, P. Rangaswamy, M. A. M.Bourke, S. Krishnamurthy, Assessment of the fiber/matrix interface bond strength in SiC/Ti-6Al-4V composites, Materials Science and Engineering A, 259, 220(1999)
8 J. A. Sherwood, H. M. Quimby, Micromechanical modeling of damage growth in titanium based metal-matrix composites, Computers & Structures, 56(2-3), 505(1995)
doi: 10.1016/0045-7949(95)00040-N
9 M. P. Thomas, M. R. Winstone, Longitudinal yielding behavior of SiC-fibre-reinforced titanium-matrix composites , Composites Science and Technology, 59, 297(1999)
doi: 10.1016/S0266-3538(98)00072-4
10 A. Brunet, R. Valle, A. Vassel, Intermetallic TiAl-based matrix composites: investigation of the chemical and mechanical compatibility of a protective coating adapted to an alumina fibre, Acta Materialia, 48, 4763(2000)
doi: 10.1016/S1359-6454(00)00285-8
11 HUANG Bin, Study on the interface, microstructure and property of SiCf/Ti composites, Dissertation for the degree of PhD, Northwestern Polytechnical University(2010)
11 (黄斌, SiCf/Ti基复合材料的界面及组织性能研究, 博士学位论文, 西北工业大学(2010))
12 S. Schuler, B. Derby, M. Wood, Matrix flow and densification during the consolidation of matrix coated fibers, Acta Materialia, 48, 1247(2000)
doi: 10.1016/S1359-6454(99)00428-0
13 Z. J. Ma, Y. Q. Yang, X. H. Lu, X. Luo, Y. Chen, The effect of matrix creep property on the consolidation process of SiC/Ti-6Al-4V composite, Materials Science and Engineering A, 433, 343(2006)
doi: 10.1016/j.msea.2006.06.038
14 R. J. Zhang, Y. Q. Yang, W. T. Shen, Preparation and tensile test of SiC fiber fabricated by three-stage chemical vapour deposition, J Inorg Mater, 25(8), 840(2010)
doi: 10.3724/SP.J.1077.2010.00840
15 LOU Juhong, YANG Yanqing, LUO Xian, CHEN Yan, Finite element analysis for effects of fiber arrays on the residual stress of SiC fiber reinforced Ti-matrix composite, Rare metal materials and engineering, 40(2), 243-246(2011)
15 (娄菊红, 杨延清, 罗贤, 陈彦, 纤维排布方式对SiC/Ti材料残余应力影响的有限元分析, 稀有金属材料与工程, 40(2), 243(2011))
16 LUO Xian, Study on the fabrication and properties of SiC fiber reinforced copper-matrix composites, Dissertation for the degree of PhD, Northwestern Polytechnical University(2008)
16 (罗贤, SiC纤维增强Cu基复合材料的制备及性能研究, 博士学位论文, 西北工业大学(2008))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.