Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (4): 248-254    DOI: 10.11901/1005.3093.2015.189
  本期目录 | 过刊浏览 |
长周期结构Mg94Cu4Y2储氢合金的吸放氢动力学和组织转变
刘江文, 邹长城, 王辉(), 欧阳柳章, 曾美琴, 朱敏
华南理工大学材料科学与工程学院 广东省先进储能材料重点实验室 广州 510640
Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy
LIU Jiangwen, ZOU Changcheng, WANG Hui**(), OUYANG Liuzhang, ZENG Meiqin, ZHU Min
Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

刘江文, 邹长城, 王辉, 欧阳柳章, 曾美琴, 朱敏. 长周期结构Mg94Cu4Y2储氢合金的吸放氢动力学和组织转变[J]. 材料研究学报, 2016, 30(4): 248-254.
Jiangwen LIU, Changcheng ZOU, Hui WANG, Liuzhang OUYANG, Meiqin ZENG, Min ZHU. Enhancing Effect of LPSO Phases on Hydrogen ab- and de-Sorption Kinetics of Mg94Cu4Y2 Alloy[J]. Chinese Journal of Materials Research, 2016, 30(4): 248-254.

全文: PDF(5329 KB)   HTML
摘要: 

设计并制备含有长周期堆垛有序结构(LPSO)的Mg94Cu4Y2储氢合金, 研究了合金在吸放氢过程中组织的转变机制以及吸放氢动力学性能。结果表明, Mg94Cu4Y2合金主要由Mg、Mg2Cu和高度固溶Cu、Y元素的含18R及14H型的LPSO组成。LPSO在首次吸氢过程中分解, 并原位生成均匀的(MgH2+MgCu2+YH3)纳米复合组织。在随后的脱氢和吸放氢循环中, 合金主要通过Mg/MgH2反应实现吸放氢。细小均匀分布的Mg2Cu和YH2对Mg/MgH2的催化作用, 使该合金表现出较优良的吸放氢动力学特性。

关键词 金属材料储氢合金Mg-Cu-Y长周期结构动力学TEM    
Abstract

An alloy Mg94Cu4Y2 with a large quantity of long-period stacking ordered (LPSO) phases bearing Cu and Y was designed and prepared in this paper. The microstructural transformations and the hydrogen absorption/desorption properties of the alloy were characterized during hydrogenation and dehydrogenation processes. The cast Mg94Cu4Y2 alloy consists of phases such as Mg, Mg2Cu and LPSOs with 18R or 14H type. The LPSOs decomposed at the first hydrogenation, and in situ formed highly even dispersed nanocomposite (MgH2+MgCu2+YH3). The Mg/MgH2 was the main reaction during the subsequent dehydrogenation cycles. The alloy exhibits excellent hydrogen absorption and desorption kinetics because the nano-sized and even dispersed Mg2Cu and YH2 catalyzed effectively the Mg/MgH2 reactions.

Key wordsmetallic materials    hydrogen storage alloy    Mg-Cu-Y    long period stacking ordered structure    kinetics    TEM
收稿日期: 2015-04-08     
ZTFLH:  TG139  
基金资助:* 国家自然科学基金51431001、51271078、 U120124,广东省自然科学基金10151064101000013、2014A030313222、2014A030311004,广东省高等学校珠江学者岗位计划 (2014)和国家国际科技合作专项2015DFA51750资助项目
作者简介: 本文联系人: 王辉, 教授
图1  铸态Mg94Cu4Y2合金的SEM背散射电子像
图2  Mg94Cu4Y2合金精细结构的TEM照片
图3  Mg94Cu4Y2合金铸态和吸放氢前后的XRD图谱
图4  Mg94Cu4Y2合金放氢状态下的显微组织
图5  Mg94Cu4Y2合金在不同温度下的吸氢动力学曲线
图6  Mg94Cu4Y2合金在不同温度下的放氢动力学曲线
图7  Mg94Cu4Y2合金的吸放氢反应组织转变示意图
1 M. Zhu, Y. Lu, L. Z. Ouyang, H. Wang, Thermodynamic tuning of Mg-based hydrogen storage alloys: Areview, Materials, 6(10), 4654(2013)
doi: 10.3390/ma6104654
2 B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy, 32(9), 1121(2007)
doi: 10.1016/j.ijhydene.2006.11.022
3 P. Chen, M. Zhu, Recent progress in hydrogen storage, Materials Today, 11(12), 36(2008)
doi: 10.1016/S1369-7021(08)70251-7
4 J. J. Reilly, R. H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorganic Chemistry, 6(12), 2220(1967)
doi: 10.1021/ic50058a020
5 T. Von Waldkirch, A. Seiler, P. Zürcher, H. J. Mathieu, Mg-based hydrogen storage materials: Surface segregation in Mg2Cu and related catalytic effects, Materials Research Bulletin, 15(3), 353(1980)
6 N.Takeichi, K. Tanaka, H. Tanaka, T. Ueda, Y. Kamiya, M. Tsukahara, H. Miyamura, S. Kikuchi, Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure, Journal of Alloys and Compounds,, 446-447(0), 543(2007)
doi: 10.1557/PROC-1128-U01-04
7 J. P. Lei, H.Huang, X. L.Dong, J. P. Sun, B. Lu, M. K. Lei, Q. Wang, C. Dong, G. Z. Cao, Formation and hydrogen storage properties of in situ prepared Mg-Cu alloy nanoparticles by arc discharge, International Journal of Hydrogen Energy, 34(19), 8127(2009)
doi: 10.1016/j.ijhydene.2009.07.092
8 A. Karty, X. Grunzweig, J. Genossar, P. S. Rudman, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: Pressure sweep method, Journal of Applied Physics, 50(11), 7200(1979)
9 Y. H. Zhang, B. W. Li, H. P. Ren, S. H. Guo, D. L. Zhao, X. L. Wang, Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10-xCux (x=0-4) alloys prepared by melt spinning, International Journal of Hydrogen Energy, 35(5), 2040(2010)
doi: 10.1016/j.ijhydene.2009.12.029
10 M. Y. Song, S. N. Kwon, J. Bae, S. Hong, Hydrogen-storage properties of Mg-23.5Ni- (0 and 5) Cu prepared by melt spinning and crystallization heat treatment, International Journal of Hydrogen Energy, 33(6), 1711(2008)
doi: 10.1016/j.ijhydene.2008.01.006
11 C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study, Intermetallics, 18(2), 203(2010)
doi: 10.1016/j.intermet.2009.07.012
12 Q. A. Zhang, D. D. Liu, Q. Q. Wang, F. Fang, D. L. Sun, L. Z. Ouyang, M. Zhu, Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase, Scripta Materialia, 65(3), 233(2011)
doi: 10.1016/j.scriptamat.2011.04.014
13 J. W. Liu, C. C. Zou, H. Wang, L. Z. Ouayng, M. Zhu, Facilitating de/hydrogenation by long-period stacking ordered structure in Mg based alloys, International Journal of Hydrogen Energy, 38(25), 10438(2013)
doi: 10.1016/j.ijhydene.2013.05.149
14 S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys, International Journal of Hydrogen Energy, 36(2), 1592(2011)
doi: 10.1016/j.ijhydene.2010.10.099
15 SUN Guoyuan, CHEN Guang, SUN Jinqiang, Study on Mg-TM-Ln type nanostructured materials, Chinese Rare Earths, 25(5), 7(2004)
15 (孙国元, 陈光, 孙强金, Mg-TM-Ln型镁基纳米结构材料研究, 稀土, 25(5), 7(2004))
doi: 10.3969/j.issn.1004-0277.2004.05.015
16 JIANG Min, ZHANG Junfeng, LI Hongxiao, HAO Shiming, Study on the long period ordered (LPO) phasein the Mg-TM (TM=Cu, Ni, Zn)-Y systems, Journal of Materials and Metallurgy, 9(4), 282(2010)
16 (蒋敏, 张俊峰, 李洪晓, 郝世明, Mg-TM(TM=Cu, Ni, Zn)-Y体系长周期有序(LPO)相的研究, 材料与冶金学报, 9(4), 282(2010))
17 M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1alloy, Materials Transactions, 47(4), 1264(2006)
doi: 10.2320/matertrans.47.1264
18 Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Materialia, 55(5), 453(2006)
19 G. Garces, P. Perez, S. Gonzalez, P. Adeva, Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8, International Journal of Materials Research, 97(4), 404(2006)
20 A. Zaluska, L. Zaluski, J. O.Strom-Olsen, Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288(1-2), 217(1999)
21 P. A. Huhn, M. Dornheim, T. Klassen, R. Bormann, Thermal stability of nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 404, 499(2005)
doi: 10.1016/j.jallcom.2004.10.087
22 K. F.Aguey-Zinsou, J. R. A. Fernandez, T. Klassen, R. Bormann, Effect of Nb2O5 on MgH2 properties during mechanical milling, International Journal of Hydrogen Energy, 32(13), 2400(2007)
doi: 10.1016/j.ijhydene.2006.10.068
23 J. Lu, Y. J. Choi, Z. Z. Fang, H. Y. Sohn, E. Rönnebro, Hydrogen storage properties of nanosized MgH2-0.1TiH2prepared by ultrahigh-energy-high-pressure milling, Journal of the American Chemical Society, 2009. 131(43), 15843(2009)
24 J. Cui, H. Wang, J. W. Liu, L. Z. Ouyang, Q. A. Zhang, D. L. Sun, X. D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, Journal of Materials Chemistry A, 1(18), 5603(2013)
doi: 10.1039/c3ta01332d
25 Y. J. Choi, J. Lu, H. Y. Sohn, Z. Z. Fang, Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling, Journal of Power Sources, 180(1), 491(2008)
26 A. Seiler, L. Schlapbach, T. Von Waldkirch, D. Shaltiel, F. Stucki, Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu, Journal of the Less Common Metals, 73(1), 193(1980)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.