Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 903-908    DOI: 10.11901/1005.3093.2015.629
  本期目录 | 过刊浏览 |
微纳级银包铜颗粒的快速制备及其导电性能*
才滨,张哲娟(),孙卓
华东师范大学物理与材料科学学院 纳光电集成与先进装备教育部工程研究中心 上海 200062
Preparation of Micro-nano-sized Cu-Ag Core-shell Particles by a Quick-making Method and their Conductivity
Bin CAI,Zhejuan ZHANG(),Zhuo SUN
School of Physics and Materials Science, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
引用本文:

才滨,张哲娟,孙卓. 微纳级银包铜颗粒的快速制备及其导电性能*[J]. 材料研究学报, 2016, 30(12): 903-908.
Bin CAI, Zhejuan ZHANG, Zhuo SUN. Preparation of Micro-nano-sized Cu-Ag Core-shell Particles by a Quick-making Method and their Conductivity[J]. Chinese Journal of Materials Research, 2016, 30(12): 903-908.

全文: PDF(4527 KB)   HTML
摘要: 

提出一种制备银包铜(Cu-Ag)核壳颗粒的一步化学置换法。使用成本较低的柠檬酸三纳(SC)作为还原剂和螯合剂, 用明胶(Gelatin)作为分散剂, 硫酸银(Ag2SO4)为Ag源, 用一步化学置换法制备银包铜(Cu-Ag)核壳颗粒, 研究了Ag2SO4和SC用量对Cu-Ag颗粒包覆效果和抗氧化性能的影响。结果表明, SC的剂量直接影响表面包裹的Ag颗粒形貌和均匀度。Ag2SO4剂量越大则Cu表面的Ag包裹量越大, 导电性越好。当SC的剂量为1.5 g, Ag2SO4的剂量为8.0 g时Cu-Ag颗粒包覆效果好且电阻较低(仅为1.1 Ω), 因此可尽量降低Ag的消耗量提高颗粒的导电性。

关键词 金属材料银包铜金属颗粒核壳结构螯合剂导电性    
Abstract

Micro- and nano-sized Cu and Ag core-shell particles were fabricated by a simple and quick-making method with copper micro-particles, gelatin and silver sulfate (Ag2SO4) as raw materials, and citric acid trisodium (SC) as reducing- and chelating-agent. The influence of SC and Ag2SO4 on the morphologies and oxidation resistance of Cu-Ag particles were investigated. The results showed that the dosage of SC directly affected the uniformity and morphology of the Ag coated Cu particles. The more the Ag2SO4 was used, the lower the conductive resistance was for the prepared particles. With dosages of 1.5 g and 8.0 g for SC and Ag2SO4respectively, the Cu- particles could be covered by Ag nanoparticles completely to form core-shell structured Cu-Ag particles, thereafter, the electrical resistance of sheets made of which can reach as low as 1.1Ω.

Key wordsmetallic materials    Ag coated Cu particles    core-shell particles    chelating agent    conductivity
收稿日期: 2015-11-17     
基金资助:* 国家青年自然基金资助项目11204082, 上海市自然基金项目16ZR1410700, 上海市闵行区企校合作项目2015MH218和华东师范大学研究生科研创新实践YJSKC2015-32资助项目
图1  原始Cu粉的粒径分布和SEM照片
图2  不同SC剂量下制备的Cu-Ag颗粒SEM照片
图3  SC的含量为1.5 g时制备的Cu-Ag粉末的XRD衍射图谱
图4  SC含量为1.5 g时制备的样品线扫描SEM和线扫描能谱分布
图5  不同Ag2SO4剂量下制备的Cu-Ag产物的形貌
图6  不同Ag2SO4剂量下制备的Cu-Ag产物中Ag的EDS能量比重
Sample Dosage of
SC/g
Dosage of
Ag2SO4/g
Sheet
resistance/(Ω/□)
(a) 0 11.7 6.0
(b) 0.5 11.7 0.5
(c) 1.5 3.0 -
(d) 1.5 4.0 200.0
(e) 1.5 5.0 30.6
(f) 1.5 8.0 1.1
(g) 1.5 11.7 0.4
(h) 6.0 11.7 4.5
表1  不同SC和Ag2SO4剂量Cu-Ag样品的方块电阻
图7  Ag2SO4剂量为8.0 g时制备的Cu-Ag样品在150℃烧结30 min后的SEM照片
1 D. S. Jung, H. M. Lee, Y. C. Kang, S. B. Park, Air-stable silver-coated copper particles ofsub-micrometer size, J. Colloid Interf. Sci., 364(2), 574(2011)
2 E. B. Choi, J. H. Lee, Ethylene glycol-based Ag plating for the wet chemical fabrication of onemicrometer Cu/Ag core/shell particles, J. Alloys Compd., 643, S231(2015)
3 Cao Xiaoguo, Zhang Haiyan, Huang Huiping, Preparation and oxidation-resistant property research of micron Cu-Ag pimetallicpowder, Materials Review, 10, 151(2006)
3 (曹晓国, 张海燕, 黄惠平, 微米级铜银双金属粉的制备及其抗氧化性能研究, 材料导报, 10, 151(2006))
4 H. T. Hai, H.Takamura, J. Koike.Oxidation behavior of Cu-Ag core-shell particles for solar cell applications. J. Alloys Compd., 564, 71(2013)
5 Y. H.Peng, C. H. Yang, K. T. Chen, S. R. Popuri, C. H. Lee, B. S. Tang, Study on synthesis of ultrafine Cu-Ag core-shell powders with high electricalconductivity, Appl. Surf. Sci., 263, 38(2012)
6 V. Mancie, C. Rousse-Bertrand, J. Dille, J. Michel, P. Fricoteaux, Sono and electrochemical synthesis and characterization of copper core-silvershell nanoparticles, Ultrason. Sonochem., 17(4), 690(2010)
7 Hu Lei, Zhu Xiaoyun, Plating Layer Structure and Property of Silver-CoatedCopper Power with High Silver Content, Rare Metal Materials and Engineering, 11, 2017(2012)
7 (胡磊, 朱晓云, 高银含量银包铜粉镀层结构及性能研究, 稀有金属材料与工程, 11, 2017(2012))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.