Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 721-730    DOI: 10.11901/1005.3093.2016.105
  研究论文 本期目录 | 过刊浏览 |
等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能*
刘满平1(),韦江涛1,李毅超1,江家威1,姜奎1,Hans J. Roven2
1. 江苏大学材料科学与工程学院 江苏省高端结构材料重点实验室 镇江 212013
2. 挪威科技大学材料科学与工程学院 特隆赫姆7491 挪威
Dynamic Aging Behavior and Mechanical Properties of an Al-Mg-Si Aluminium Alloy Induced by Equal Channel Angular Pressing
Manping LIU1,**(),Jiangtao WEI1,Yichao LI1,Jiawei JIANG1,Kui JIANG1,J. Roven Hans2
1. Jiangsu Province Key Laboratory of High-end Structural Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
引用本文:

刘满平,韦江涛,李毅超,江家威,姜奎,Hans J. Roven. 等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能*[J]. 材料研究学报, 2016, 30(10): 721-730.
Manping LIU, Jiangtao WEI, Yichao LI, Jiawei JIANG, Kui JIANG, J. Roven Hans. Dynamic Aging Behavior and Mechanical Properties of an Al-Mg-Si Aluminium Alloy Induced by Equal Channel Angular Pressing[J]. Chinese Journal of Materials Research, 2016, 30(10): 721-730.

全文: PDF(0 KB)   HTML
摘要: 

在不同温度对固溶处理后的6061铝合金进行等通道转角挤压(ECAP), 以实现动态时效处理。采用X射线衍射(XRD)、差示扫描量热法(DSC)、透射电镜(TEM)及拉伸测试, 研究了6061 Al-Mg-Si铝合金的动态时效行为和力学性能。DSC分析结果表明, 合金在ECAP过程中发生动态时效析出。XRD, DSC和TEM的分析结果均表明, 合金在动态时效过程中生成了大量的位错和β″析出相。在不同温度进行ECAP动态时效, 制备出几种高韧性(均匀伸长率大于10%)和高强度兼备的6061铝合金。ECAP动态时效铝合金的最高抗拉强度和屈服强度, 分别为450 MPa 和 425 MPa。ECAP铝合金的高强高韧, 可归因于ECAP后极细的β''析出相和高密度位错的交互作用。

关键词 金属材料等通道转角挤压大塑性变形Al-Mg-Si铝合金动态时效力学性能强韧性    
Abstract

In this paper, dynamic aging behavior and mechanical properties of an Al-Mg-Si alloy were investigated by means of X-ray diffractometer (XRD), differential scanning calorimetry (DSC) analysis, transmission electron microscope (TEM) and tensile test. The dynamic aging was performed on the solution-treated alloy through equal channel angular pressing (ECAP) at different temperatures. The DSC analyses reveal that dynamic aging in the alloys occurred during ECAP. The XRD, DSC analyses and TEM observation reveal that a considerable amount of dislocations and β″ precipitates had already existed during dynamic aging. Combination of high ductility (uniform elongation large than 10%) and high strength was obtained for the ECAPed alloys. The highest ultimate tensile strength and yield strength of the ECAPed alloys are 450 MPa and 425 MPa, respectively. The very high strength and good ductility of the ECAPed alloy can be attributed to the synergistic interaction of the fine β'' precipitates and the high densities of dislocations after ECAP.

Key wordsmetallic materials    equal-channel angular pressing    severe plastic deformation    Al-Mg-Si aluminum alloy    dynamic aging behavior    mechanical properties    strength-ductility
收稿日期: 2016-02-26     
基金资助:* 国家自然科学基金资助项目50971087、 江苏省高校自然科学研究项目14KJA430002和江苏省高端结构材料重点实验室基金hsm1301资助
Mg Si Cu Cr Mn Fe Zn Ti Al
0.8~1.2 0.4~0.8 0.15~0.40 0.15~0.35 0.15 0.7 0.25 0.15 Bal.
表1  6061铝合金的成分
图1  拉伸试样的尺寸
图2  不同状态6061铝合金的X射线衍射图
State D/nm ε212/% ρ /1014m-2
SST+ECAP at RT 100 0.074 1.75
SST+ECAP at 110°C 113 0.138 1.48
SST+ECAP at 170°C 143 0.100 1.28
SST+ECAP at 191°C 173 0.115 0.81
表2  XRD分析测得的ECAP合金的微观结构参数
图3  固溶态和动态时效试样的DSC曲线
State Clusters GP zones β " β ' β
SST 65 160 245 330 415
SST+ECAPed at RT 70 205 - - 395
SST+ECAPed at 170 °C 90 190 270 360 400
SST+ECAPed at 191 °C 70 185 250 - 395
表3  固溶态和不同温度ECAP动态时效态DSC曲线上放热峰的温度
图4  6061合金经170℃ ECAP后的TEM照片
图5  6061合金在170℃进行 ECAP后动态时效的析出相和位错的TEM照片
图6  不同处理态6061铝合金的工程应力应变曲线
State σUTS / MPa σ0.2 / MPa δ /%
SST 151 67 31
T6 265 186 21
SST+ECAPed at RT 430 372 15
SST+ECAPed at 110℃ 450 425 19
SST+ECAPed at 170℃ 310 272 18
SST+ECAPed at 191℃ 326 285 20
表4  固溶态、T6态和不同温度ECAP后6061铝合金的力学性能
图7  6061铝合金的真应力-真应变曲线
Alloys and treatments σb/MPa σ0.2/MPa δ/% δu/%
6061 ECAP at RT [Our work] 430 372 15 13
6061 ECAP at 110°C [Our work] 450 425 19 15
6061 ECAP at 170°C [Our work] 310 272 18 11
6061 ECAP at 191°C [Our work] 326 285 20 12
6061 Pre-aging + CR + Post-aging[12] 560 542 9 7
6061 MF + Post-aging[14] 385 360 11 8
AA6060 HPT at RT[24] 525 475 6 0.8
6061 CR + WR + PA[28] 406 380 10 8
6061 HPT at RT[29] 690 660 2 5.5
表5  国内外大塑性变形6061铝合金的强度和韧性
图8  6061ECAP铝合金的加工硬化速率-真应变曲线以及与文献[24, 28]的对比
图9  大塑性变形6000系铝合金的强度和韧性
1 LI Hai, WANG Xiuli, SHI Zhixin, WANG Zhixiu, ZHENG Ziqiao, Precipitation behaviors of Al-Mg-Si- (Cu) aluminum alloys during continuous heating, Trans. Nonferrous Met. Soc. China, 21(9), 2028(2011)
1 (李海, 王秀丽, 史志欣, 王芝秀, 郑子樵, Al-Mg-Si-(Cu)铝合金在连续升温中的析出行为, 中国有色金属学报, 21(9), 2028(2011))
2 I. Sabirov, M. Y. Murashkin, R. Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng., 560(10), 1(2013)
3 JIANG Tinghui, LIU Manping, XIE Xuefeng, WANG Jun, WU Zhenjie, LIU Qiang, Hans J.Roven, Grain boundary structure of Al-Mg alloys processed by high pressure torsion, Chinese Journal of Materials Research, 28(5), 371(2014)
3 (蒋婷慧, 刘满平, 谢学锋, 王俊, 吴振杰, 刘强, Hans J.Roven, 高压扭转大塑性变形Al-Mg合金中的晶界结构, 材料研究学报, 28(5), 371(2014))
4 C. H. Liu, X. L. Li, S. H. Wang, J. H. Chen, Q. Teng, J. Chen, Y. Gu, A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys, Mater. Design, 54, 144(2014)
5 S. Chen, Y. H. Zhao, Y. T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Mater., 55(17), 5822(2007)
6 LI Xiao, YANG Ping, LI Jizhong, DING Hua, Precipitation behavior, texture and mechanical properties of AZ80 magnesium alloy produced by equal channel angular extrusion, Chinese Journal of Materials Research, 24(1), 1(2010)
6 (李萧, 杨平, 李继忠, 丁桦, 等通道挤压 AZ80镁合金的析出行为和性能, 材料研究学报, 24(1), 1(2010))
7 P. N. Rao, B. Viswanadh, R. Jayaganthan, Effect of cryorolling and warm rolling on precipitation evolution in Al 6061 alloy ling and warm rolling on precipitation evolution in Al 6061 alloy, Mater. Sci. Eng., 606, 1(2014)
8 H. J. Roven, M. P. Liu, J. C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy, Mater. Sci. Eng., 483, 54(2008)
9 LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao, Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alley, Acta Metall. Sin., 50(10), 1244(2014)
9 (李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵, 预时效+冷轧变形+再时效对6061 铝合金微观组织和力学性能的影响, 金属学报, 50(10), 1244(2014))
10 V. Fallash, A. Korinek, N. Ofori-Opoku, B. Raeisinia, M. Gallerneault, N. Provatas, S. Esmaeili, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater., 82, 57(2015)
11 M. Zha, Y. Li, R. H. Mathiesen, R. Bjorge, H. J. Roven, Achieve high ductility and strength in an Al-Mg alloy by severe plastic deformation combined with inter-pass annealing, Mater. Sci. Eng., 598, 41(2014)
12 Z. Wang, H. Li, F. Miao, B. Fang, R. Song, Z. Zheng, Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment, Mater. Sci. Eng., 607, 313(2014)
13 Y. H. Zhao, X. Z. Liao, S. Chen, E. Ma, Y. T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater., 18(17), 2280(2006)
14 W. Yan, X. Liu, J. Huang, L. Chen, Strength and ductility in ultrafine-grained wrought aluminum alloys, Mater. Design, 49, 520(2013)
15 M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, Processing of metals by equal-channel angular pressing, J. Mater. Sci., 36(12), 835(2001)
16 JIN Man, SHAO Guangjie, Effect of Cu addition on precipitation phases at early stage in 6082 Al-Mg-Si alloy aged, Trans. Nonferrous Met. Soc. China, 19(1), 1(2009)
16 (金曼, 邵光杰, Cu 对 6082Al-Mg-Si 合金时效初期析出相的影响, 中国有色金属学报, 19(1), 1(2009))
17 S. K. Panigrahi, R. Jayaganthan, V. Pancholi, M. Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy, Mater. Chem. Phys., 122, 188(2010)
18 J. Buha, R. N. Lumley, A. G. Crosky, K. Hono, Secondary precipitation in an Al-Mg-Si-Cu alloy, Acta Mater., 55(9), 3015(2007)
19 L. Zhen, S. B. Kang, DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different times, Materials Letters, 37(6), 349(1998)
20 M. P. Liu, Z. J. Wu, R. Yang, J. T. Wei, Y. D. Yu, P. C. Skaret, H. J. Roven, DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy, Progress in Natural Science: Materials International, 25(2), 153(2015)
21 M. P. Liu, T. H. Jiang, J. Wang, Q. Liu, Z. J. Wu, Y. D. Yu, P. C. Skaret, H. J. Roven, Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation, Trans. Nonferrous Met. Soc. China, 24(12), 3858(2014)
22 T. Ungár, Characterization of nanocrystalline materials by X-ray line profile analysis, J. Mater. Sci., 42(5), 1584(2007)
23 M. Cai, D. P. Field, G. W. Lorimer, A systematic comparison of static and dynamic ageing of two Al-Mg-Si alloys, Mater. Sci. Eng., 373(1), 65(2004)
24 G. Sha, K. Tugcu, X. Z. Liao, P. W. Trimby, M. Y. Murashkin, R. Z. Valiev, S. P. Ringer, Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion, Acta Mater., 63, 169(2014)
25 J. W. Martin, Precipitation Hardening (Oxford, Butterworth-Heinemann, 1998)p.78
26 M. J. Starink, S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater., 51(17), 5131(2003)
27 Y. H. Zhao, X. Z. Liao, S. Cheng, E. Ma, Y. T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Advanced Materials, 18(17), 2280(2006)
28 R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy, Mater. Design, 39, 226(2012)
29 G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation, Philos. Mag. Lett., 88(6), 459(2008)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.