Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 15-22    DOI: 10.11901/1005.3093.2015.191
  研究论文 本期目录 | 过刊浏览 |
316L不锈钢在表面机械滚压处理时的形变诱导马氏体相变和组织细化过程*
许久凌1,2, 黄海威2, 赵明纯1, 王镇波2(), 卢柯2,3
1. 中南大学材料科学与工程学院 长沙 410083
2. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
3. 南京理工大学格莱特纳米科技研究所 南京 210094
Processes of Deformation-induced Martensite Trans-formation and Microstructure Refinement of 316L Stainless Steel during Surface Mechanical Rolling Treatment
XU Jiuling1,2, HUANG Haiwei2, ZHAO Mingchun1, WANG Zhenbo2,**(), LU Ke2,3
1. School of Material Science and Engineering, Central South University, Changsha 410083, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

许久凌, 黄海威, 赵明纯, 王镇波, 卢柯. 316L不锈钢在表面机械滚压处理时的形变诱导马氏体相变和组织细化过程*[J]. 材料研究学报, 2016, 30(1): 15-22.
Jiuling XU, Haiwei HUANG, Mingchun ZHAO, Zhenbo WANG, Ke LU. Processes of Deformation-induced Martensite Trans-formation and Microstructure Refinement of 316L Stainless Steel during Surface Mechanical Rolling Treatment[J]. Chinese Journal of Materials Research, 2016, 30(1): 15-22.

全文: PDF(4996 KB)   HTML
摘要: 

采用表面机械滚压处理(SMRT)在316L不锈钢表面制备出梯度纳米结构(GNS)表层, 研究了SMRT对GNS表层中的相组成和微观组织演变的影响机制。结果表明: 经SMRT后316L不锈钢表层的奥氏体相发生形变诱导马氏体相变, 且马氏体含量随着SMRT压下量的增大而增多; 微观组织的细化过程先后经历了高密度位错生成和交互作用、形变孪生、形变诱导马氏体相变和马氏体晶粒细化过程, 最终在最表层形成以马氏体相为主、晶粒尺寸~55 nm的纳米晶组织。

关键词 金属材料纳米材料表面机械滚压处理梯度纳米结构316L不锈钢形变诱导马氏体相变    
Abstract

A gradient and nanostructured (GNS) surface layer was formed on a 316L stainless steel sample by using surface mechanical rolling treatment (SMRT). The effect of SMRT on the evolution of phase composition and microstructure was studied of the GNS surface layer. The results show that deformation-induced martensite transformation occurs in the surface layer after SMRT, and the martensite amount increases with the increasing penetration depth of SMRT. The microstructural refinement mechanism includes subsequently the formation and interaction of various dislocations, deformation twinning, deformation-induced martensite transformation, and martensite refinement. Finally, nanostructure with mostly martensite and a mean grain size of ca. 55 nm was achieved in the topmost surface layer of the 316L sample.

Key wordsmetallic materials    nanostructured material    surface mechanical rolling treatment    gradient nanostructure    316L stainless steel    deformation-induced martensitic transformation
收稿日期: 2015-04-08     
基金资助:* 国家重点基础研究发展计划资助项目2012CB932201, 中国科学院重大突破择优支持项目KGZD-EW-T06, 沈阳材料科学国家(联合)实验室资助项目2015RP04
作者简介: 王镇波, 研究员
图1  316L不锈钢经不同道次SMRT后的SEM横截面形貌
图2  经1道次和6道次SMRT后样品的显微硬度随深度的变化
图3  不同道次SMRT处理后316L样品表层的XRD谱
图4  样品最表面马氏体含量与SMRT加工道次的关系
图5  ~500 μm深度处的位错结构TEM像和距离处理表面200-300 μm深度处的形变孪晶TEM像和选区电子衍射(SAED)谱
图6  距离表面约200 μm深度处的TEM明场像、SAED谱、马氏体TEM暗场像和奥氏体TEM暗场像
图7  SMRT-6P试样距离表面约~10 μm深度处的TEM明场像和暗场像及SAED谱
图8  SMRT-6P试样最表面的TEM明场像、暗场像和SAED谱
图9  SMRT 316L样品表层微观结构演化示意图
1 K. Lu, Making strong nanomaterials ductile with gradients, Science, 345(6203), 1455(2014)
2 X. H. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia, 52(10), 1039(2005)
3 T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Materialia, 54(11), 1949(2006)
4 H. T. Wang, N. R. Tao, K. Lu, Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel, Scripta Materialia, 68(1), 22(2013)
5 H. W. Huang, Z. B. Wang, X. P. Yong, K. Lu, Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment, Materials Science and Technology, 29(10), 1200(2013)
6 F. Lecroisey. A.Pineau, Martensitic Transformations Induced by Plastic-Deformation In Fe-Ni-Cr-C System, Metallurgical Transactions, 3(2), 387(1972)
7 H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta Materialia, 51(7), 1871(2003)
8 C. X. Huang, G. Yang, Y. L. Gao, S. D. Wu, S. X. Li, Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation, Journal of Materials Research, 22(3), 724(2007)
9 A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, J. Lu, The influence of strain rate on the microstructure transition of 304 stainless steel, Acta Materialia, 59(9), 3697(2011)
10 G. B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, A6(4), 791(1975)
11 F. K. Yan, G. Z. Liu, N. R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia, 60(3), 1059(2012)
12 C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K.Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, V. K. Vasudevan, Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility, Materials Science and EngineeringA-Structural Materials Properties Microstructure and Processing, 613, 274(2014)
13 H. W. Huang, Z. B. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Materialia, 87, 150(2015)
14 M. Eskandari, A. Najafizadeh, A. Kermanpur, Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing, Materials Science and Engineering: A, 519, 46(2009)
15 K. Spencer, M. Veron, K. Yu-Zhang, J. D. Embury, The strain induced martensite transformation in austenitic stainless steels Part 1-Influence of temperature and strain history, Materials Science and Technology, 25(1), 7(2009)
16 G. Liu, J. Lu, K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 286(1), 91(2000)
17 C. Herrera, R. L. Plaut, A. F. Padilha, Microstructural refinement during annealing of plastically deformed austenitic stainless steels, Fundamentals of Deformation and Annealing, 550, 423(2007)
18 S. S. Hecker, M. G. Stout, K. P. Staudhammer, J. L. Smith, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel .1. magnetic measurements and mechanical-behavior, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 13(4), 619(1982)
19 J. R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metallurgica, 1(5), 531(1953)
20 H. C. Shin, T. K. Ha, W. J. Park, Y. W. Chang, Deformation-induced martensitic transformation under various deformation modes, Engineering Plasticity from Macroscale to Nanoscale Pts 1 and 2, 233(2), 667(2003)
21 V. Shrinivas, S. K.VarmaL. E. Murr, Deformation-induced martensitic characteristics in 304-sainless and 316-stainless steels during room-temperature rolling, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 26(3), 661(1995)
22 J. W. Christian, S. Mahajan, Deformation twinning, Progress in Materials Science, 39(1-2), 1(1995)
23 M. A. Meyers, O. Vohringer, V. A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Materialia, 49(19), 4025(2001)
24 C. X. Huang, G. Yang, B. Deng, S. D. Wu, S. X. Li, Z. F. Zhang, Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing, Philosophical Magazine, 87(31), 4949(2007)
25 T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara, Experimental-study of martensite nucleation and growth in 18-8 stainless-steel, Acta Metallurgica, 25(10), 1151(1977)
26 N. R. Tao, K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Materialia, 60(12), 1039(2009)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.