Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (9): 663-670    DOI: 10.11901/1005.3093.2014.564
  本期目录 | 过刊浏览 |
碳包覆磁性镍纳米粒子对亚甲基蓝的吸附性能*
李冉冉1,黄昊1,董星龙1(),王永辉1,于洪涛2,全燮2,JUNG Youngguan3
1. 大连理工大学材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024
2. 大连理工大学环境与生命学院 工业生态与环境工程教育部重点实验室 大连 116024
3. Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
Adsorption Performance of Methylene Blue onto Nanoparticles of Carbon-Encapsulated Magnetic Nickel
Ranran LI1,Hao HUANG1,Xinglong DONG1,**(),Yonghui WANG1,Hongtao YU2,Xie QUAN2,Youngguan JUNG3
1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beam, Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
3. Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
引用本文:

李冉冉,黄昊,董星龙,王永辉,于洪涛,全燮,JUNG Youngguan. 碳包覆磁性镍纳米粒子对亚甲基蓝的吸附性能*[J]. 材料研究学报, 2015, 29(9): 663-670.
Ranran LI, Hao HUANG, Xinglong DONG, Yonghui WANG, Hongtao YU, Xie QUAN, Youngguan JUNG. Adsorption Performance of Methylene Blue onto Nanoparticles of Carbon-Encapsulated Magnetic Nickel[J]. Chinese Journal of Materials Research, 2015, 29(9): 663-670.

全文: PDF(2002 KB)   HTML
摘要: 

采用直流电弧等离子体法在甲烷气氛中蒸发块体金属镍, 原位合成了核/壳型碳包覆镍纳米粒子(Ni@C NPs)。在透射电子显微镜下可见明显的包覆结构, 以镍单质金属为核心, 表面包覆着厚度为3-5 nm的石墨碳层。根据N2吸附等温线计算出BET比表面积为38.82 m2g-1。用双氧水对其表面进行改性处理, 实现了表面含氧官能团的功能化, 改善了表面碳的浸润性而提高亲水性, 作为吸附剂可用于染料亚甲基蓝的吸附。系统研究了吸附时间、初始浓度和pH值对吸附量的影响。采用准一级和准二级动力学模型研究了动力学, 用Langmuir和Freundlich模型拟合分析了吸附等温线。进行了5个循环的吸脱附循环再利用实验, 之后收集粉体吸附剂, 表明回收率为69.4%。用外加磁场进行的碳包覆镍纳米粒子分离研究的结果表明, 用磁分离技术进行吸附剂的回收与再利用是一种简单而高效的方法。

关键词 复合材料碳包覆镍纳米粒子吸附亚甲基蓝磁分离    
Abstract

Nanoparticles of carbon encapsulated nickel (Ni@C NPs) were in-situ synthesized by direct current arc-discharge plasma method through evaporating pure Ni in methane atmosphere. Transmission electron microscopy observation revealed that the nanoparticles (Ni@C NPs) exhibited an encapsulation structure with Ni metal as core and carbon 3-5 nm in thickness as shell. The BET surface area of the prepared Ni@C NPs is 38.82 m2g-1 according to N2 adsorption-desorption isotherm. Surface modification with hydrogen peroxide was carried to graft oxygen-containing groups on carbon, which can improve the wettability and hydrophilicity of the Ni@C NPs. Then the effect of contact time, adsorption time and pH values on the adsorption of methylene blue was systematically investigated with the surface modified Ni@C NPs as adsorbent. The adsorption kinetics was analyzed with pseudo-first-order and pseudo-second-order models and the adsorption isotherm of methylene blue onto Ni@C NPs was fitted by Langmuir and Freundlich models. In addition, the result of recycling experiments for 5 cycles showed that a recovery rate 69.4% for the adsorbent could be reached. Furthermore, results of trial separation of Ni@C NPs by applied magnetic fields show that the magnetic field assisted separation technology is efficient means for the recycling and reuse of this adsorbent.

Key wordscomposite    carbon coated nickel nanoparticles    adsorption    methylene blue    magnetic separation
收稿日期: 2014-10-08     
基金资助:* 国家重点基础研究发展计划2011CB936002和国家自然科学基金51271044、51331006、51171033资助项目。
图1  碳包覆镍纳米粒子的HRTEM像和XRD谱
图2  改性前后碳包覆镍纳米粒子的傅里叶红外光谱图
图3  改性前后碳包覆镍纳米粒子的Zeta电位随pH的变化曲线
图4  改性前后碳包覆镍纳米粒子的分散性
图5  亚甲基蓝初始浓度对去除率和吸附量的影响
图6  pH变化对吸附的影响
图7  准一级动力学和准二级动力学对碳包覆镍纳米粒子吸附MB拟合
Pseudo-first-order Pseudo-second-order
CMB /mgL-1 qe,exp /mgg-1 k1 /min-1 qe,cal /mgg-1 R 1 2 k2 /gmg-1min-1 qe,cal /mgg-1 R 2 2
10 9.7 0.020 3.8 0.623 0.017 9.9 0.998
20 16.4 0.026 7.1 0.780 0.011 16.8 0.999
30 19.7 0.030 18.6 0.953 0.002 22.1 0.994
表1  用准一级动力学和准二级动力学对碳包覆镍纳米粒子吸附MB拟合结果参数
图8  用Langmuir和Freundlich模型对碳包覆镍纳米粒子吸附MB拟合
Langmuir Freundlich
KL/Lmg-1 qm/mgg-1 r L 2 RL KF/Lg-1 r F 2 n
1.74 20.6 0.992 0.019 12.48 0.999 4.99
表2  碳包覆镍纳米粒子吸附MB的等温线参数
Adsorbent Adsorption capacity/mgg-1 Ref.
Anaerobic granular sludge 45.01 [25]
Polyaniline nanotubes base/silica composite 10.31 [26]
Magnetic multi-wall carbon nanotube 11.89 [27]
Reduced graphene oxide-based hydrogels 7.85 [28]
Ni@C nanoparticles 20.6 This study
表3  与已报道吸附剂对亚甲基蓝吸附量的比较
图9  碳包覆镍纳米粒子的吸脱附循环性能
1 W. Deligeer, Y. W. Gao, S. Asuha,Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites, Applied Surface Science, 257, 3524(2011)
2 M. A. Rauf, M. A. Meetani, A. Khaleel, A. Ahmed,Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chemical Engineering Journal, 157, 373(2010)
3 M. M. Alnuaimi, M. A. Rauf, S. S. Ashraf,Comparative decoloration study of Neutral Red by different oxidative processes, Dyes Pigm., 72, 367(2007)
4 J. H. Sun, S. P. Sun, G. L. Wang, L. P. Qiao,Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process, Dyes Pigm., 74, 647(2007)
5 FAN Yuxin,ZHOU Zengyan, Current situation and development prospect of textile dye wastewater treatment methods, Engineering and Technology, 9, 22(2002)
5 (樊毓新, 周增炎, 染料废水的处理方法现状与发展前景, 工程与技术, 9, 22(2002))
6 I. Uzun, F. Güzel,Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents, Turk J Chem., 24, 291(2000)
7 M. Ugǔrlu, A. Gürses, M. A??ky?ld?z,Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation, Microporous and Mesoporous Materials, 111, 228(2008)
8 P. K. Malik,Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and Pigments, 56, 239(2003)
9 D. M. Nevskaia, A. Santianes, V. Mu?oz, A. G. Ruíz. Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorptionkinetic study, Carbon, 37, 1065(1999)
10 S. lijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
11 H. H. Cho, K. Wepasnick, B. A. Smith, F. K. Bangash, D. H. Fairbrother, W. P. Ball,Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon, Langmuir, 26(2), 967(2010)
12 X. J. Peng, Y. H. Li, Z. K. Luan, Z. C. Di, H. Y. Wang, B. H. Tian, Z. P. Jia,Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes, Chemical Physics Letters, 376, 154(2003)
13 Z. Y. Zhang, J. L. Kong,Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution, Journal of Hazardous Materials, 193, 325(2011)
14 L. C. A. Oliveira, R. V. R. A. Rios, J. D. Fabris, V. Garg, K. Sapag, R. M. Lago,Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon, 40, 2177(2002)
15 S. Qu, F. Huang, S. N. Yu, G. Chen, J. L. Kong,Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles, Journal of Hazardous Materials, 160, 643(2008)
16 X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, X. G. Zhao, Z. J. Li, Y. C. Chuang,Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane, J. Mater. Res., 14(5), 1782(1999)
17 X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei,Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89, 053115(2006)
18 X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, Y. C. Chuang,Surface characteristic of ultrafine Ni particles, Nanostr. Mater., 10, 585(1998)
19 X. M. Yan, B. Y. Shi, J. J. Lu, C. H. Feng, D. S. Wang, H. X. Tang,Adsorption and desorption of atrazine on carbon nanotubes, Journal of Colloid and Interface Science, 321, 30(2008)
20 A. Ayla, A. ?avu?, Y. Bulut, Z. Baysal,?. Aytekin, Removal of methylene blue from aqueous solutions onto Bacillus subtilis: determination of kinetic and equilibrium parameters, Desalination and Water Treatment, 51, 7596(2013)
21 N. Kannan, M. M. Sundaram,Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and Pigments, 51, 25(2001)
22 D. Kavitha, C. Namasivayam,Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresource Technology, 98, 14(2007)
23 I. Langmuir,The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 2221(1918)
24 Y. Qu, C. J. Zhang, F. Li, X. W. Bo, G. F. Liu, Q. Zhou,Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon, Journal of Hazardous Materials, 169, 146(2009)
25 F. F. Liu, S. X.Teng, R. H. Song, S. G. Wang,Adsorption of methylene blue on anaerobic granular sludge: Effect of functional groups, Desalination, 263, 11(2010)
26 M. M. Ayad, A. A. El-Nasr, J. Stejskal,Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite, Journal of Industrial and Engineering Chemistry, 18, 1964(2012)
27 J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou,Yi Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, Journal of Hazardous Materials, 164, 1517(2009)
28 J. N. Tiwari, K. Mahesh, N. H. Le, K. C. Kemp, R. Timilsina, R. N. Tiwari, K. S. Kim,Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon, 56, 173(2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.