Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (7): 535-541    DOI: 10.11901/1005.3093.2014.446
  本期目录 | 过刊浏览 |
合金元素对A7N01S-T5铝合金力学性能和断裂韧性的影响
覃超1,苟国庆1(),车小莉1,陈辉1,陈佳1,2
1. 西南交通大学 材料学院 成都 610031
2. 成都市技师学院 成都 611731
Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy
Chao QIN1,Guoqing GOU1,**(),Xiaoli CHE1,Hui CHEN1,Jia CHEN1,2
1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Chengdu Technician College, Chengdu 611731, China
引用本文:

覃超,苟国庆,车小莉,陈辉,陈佳. 合金元素对A7N01S-T5铝合金力学性能和断裂韧性的影响[J]. 材料研究学报, 2015, 29(7): 535-541.
Chao QIN, Guoqing GOU, Xiaoli CHE, Hui CHEN, Jia CHEN. Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2015, 29(7): 535-541.

全文: PDF(5552 KB)   HTML
摘要: 

测试4种A7N01S-T5铝合金的力学性能和断裂韧性, 研究了不同合金元素的影响。结果表明: 影响A7N01S-T5铝合金性能的3类合金元素适宜的成分配比为Zn(4.34)、Mg(1.43), Mn(0.27)、Cr(0.13), Zr(0.12)、Ti(0.066)。在此条件下, 合金的抗拉强度、屈服强度、伸长率、冲击功和断裂韧度分别为415 MPa, 378 MPa, 13.49%, 12.3J和28.950 kJm-2。极差分析表明, Zn、Mg含量是合金强度与塑性共同的主要影响因素。因此, 为了制备出综合性能优异的合金, 需选取适当的Zn、Mg含量。对于成分配比适宜的合金, 其晶内析出相η′(MgZn2)呈细小弥散状分布, 而晶界析出相η(MgZn2)粗大, 呈断续状分布。

关键词 金属材料A7N01S-T5铝合金合金元素显微组织力学性能断裂韧度    
Abstract

The influence of alloying elements on mechanical property and fracture toughness of A7N01S-T5 aluminum alloy was investigated on the basis of impact test, tensile test and three point bending test. The results show that with a proper addition of the selected alloying elements such as Zn(4.34), Mg(1.43), Mn(0.27), Cr(0.13), Zr(0.12) and Ti(0.066), the A7N01S-T5 aluminum alloy possesses a comprehensive performance with tensile strength 415 MPa, yield strength 378 MPa, specific elongation 13.49%, impact energy 12.3 J and fracture toughness 28.950 kJm-2 respectively. It is noted that among others the content of Zn and Mg is the main factor influencing both the strength and ductility, therefore, which should be carefully chosen. It is observed that η′ phase precipitates in the grain interior and η phase precipitates discontinuously at grain boundaries for the A7N01S-T5 aluminum alloy with proper chemical composition.

Key wordsmetallic materials    A7N01S-T5 alloy    alloying element    microstructure    mechanical properties    fracture toughness
收稿日期: 2014-08-25     
基金资助:* 国家重点基础研究发展计划2014CB660807, 国家科技支撑计划2015BAG12B01和中央高校基本科研经费2682014CX003资助项目。
图1  三点弯曲断裂韧度试验试样的尺寸
Sample No. Si Fe Cu Factor A Factor B Factor C Al
Zn Mg Mn Cr Zr Ti
1# 0.110 0.15 0.084 4.34 (4.2-4.5) 1.43 (1.4-1.6) 0.27 (0.2-0.35) 0.13 (0.1-0.15) 0.12 (0.1-0.15) 0.066 (0.05-0.1) Bal.
2# 0.093 0.15 0.079 4.33 (4.2-4.5) 1.47 (1.4-1.6) 0.36 (0.35-0.5) 0.24 (0.2-0.3) 0.16 (0.15-0.25) 0.028 (0-0.05) Bal.
3# 0.075 0.16 0.084 4.69 (4.5-4.8) 1.63 (1.6-1.8) 0.22 (0.2-0.35) 0.14 (0.1-0.15) 0.17 (0.15-0.25) 0.027 (0-0.05) Bal.
4# 0.085 0.16 0.073 4.54 (4.5-4.8) 1.59 (1.6-1.8) 0.34 (0.35-0.5) 0.24 (0.2-0.3) 0.13 (0.1-0.15) 0.097 (0.05-0.1) Bal.
表1  实验铝合金的化学成分
Sample No. Rm/MPa R0.2/MPa A/% R(R0.2/Rm) KV2/J Jm(12)/kJm-2
1# 415 378 13.49 0.9108 12.3 28.950
2# 401 363 14.98 0.9052 16.13 43.835
3# 436 405 12.71 0.9288 9.33 19.180
4# 419 382 12.31 0.9116 10.67 24.644
表2  不同成分的A7N01S-T5铝合金的力学性能和断裂韧度
图2  断裂韧度Jm(12)与冲击功KV2的关系曲线
Factor Level Rm/MPa R0.2/MPa A/% KV2/J Jm(12)/kJm-2
A 1 408 371 14.24 14.32 36.393
2 428 394 12.51 10 21.912
B 1 426 392 13.1 10.82 24.065
2 410 373 13.65 13.4 34.240
C 1 417 380 12.9 11.49 26.297
2 419 384 13.85 12.73 31.508
Target component Influence degree A2B1C2(3#) A2B1C2(3#) A1B2C2(2#) A1B2C2(2#) A1B2C2(2#)
A>B>C A>B>C A>C>B A>B>C A>B>C
表3  极差分析结果
图3  不同成分A7N01S-T5铝合金的显微组织
图4  不同成分的A7N01S-T5铝合金的第二相分布和能谱分析
图5  不同成分A7N01S-T5铝合金三点弯断裂韧性实验断口的形貌
1 HUANG Ying,DENG Yunlai, CHEN Long, LIAO Fei, ZHANG Xinming, Microstructure, texture and property of extruded 7N01 aluminum alloy plates, Chinese Journal of Materials Research, 28(7), 541(2014)
1 (黄 英, 邓运来, 陈 龙, 廖 飞, 张新明, 7N01铝合金挤压板的微结构、织构和性能, 材料研究学报, 28(7), 541(2014))
2 GOU Guoqing,HUANG Nan, CHEN Hui, MENG Lichun, WU Peipei, Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train, Materials Science and Technology, 20(4), 1343(2012)
2 (苟国庆, 黄 楠, 陈 辉, 孟立春, 吴沛沛, 高速列车A7N01S-T5铝合金应力腐蚀行为研究, 材料科学与工艺, 20(4), 1343(2012))
3 LIU Jingan, XIE Shuisheng, Application and Development of Aluminum Alloy (Beijing, Metallurgy Industry Press, 2004)p.17
3 (17)
4 P. C.Bai, X. H. Hou, X. Y. Zhang, C. W. Zhao, Y. M. Xing,Microstructure and mechanical properties of a large billet of spray formed Al-Zn-Mg-Cu alloy with high Zn content, Materials Science and Engineering A, 508, 23(2009)
5 M. M. Sharma, M. F. Amateau, T. J. Eden,Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites, Materials Science and Engineering A, 424, 87(2006)
6 LANG Yujing,CUI Hua, CAI Yuanhua, ZHANG Jishan, Dynamic precipitation of 7050 Al alloy on the different deformation temperature, Chinese Journal of Materials Research, 26(2), 143(2012)
6 (郎玉婧, 崔 华, 蔡元华, 张济山, 7050铝合金在不同温度变形的动态析出行为, 材料研究学报, 26(2), 143(2012))
7 Z. B. He, Z. M. Yin, S. Lin, Y. Deng, B. C. Shang, X. A. Zhou,Preparation, microstructure and properties of Al-Zn-Mg-Sc alloy tubes, Journal of Rare Earths, 28(4), 641(2010)
8 S. W. Nam, D. H. Lee,The effect of Mn on the mechanical behavior of Al alloys, Metals and Materials, 6(1), 13(2000)
9 XU Lianghong,TIAN Zhiling, PENG Yun, ZHANG Xiaomu, Effects of trace elements on microstructure and mechanical properties of high strength aluminum alloy welds, The Chinese Journal of Nonferrous Metals, 18(6), 959(2008)
9 (许良红, 田志凌, 彭 云, 张晓牧, 微量元素对高强铝合金焊缝组织和力学性能的影响, 中国有色金属学报, 18(6), 959(2008))
10 A. Deschamps, Y. Brechet,Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-( Zr) alloy, Materials Science and Engineering A, 251, 200(1998)
11 Z. M. Yin, L. Yang, Q. L. Pan, F. Jiang,Effect of minor Sc and Zr on microstructures and mechanical properties of Al-Zn-Mg based alloys, Nonferrous Met Soc.China, 11(6), 822(2001)
12 YANG Shoujie,XIE Youhua, ZHU Na, DAI Shenglong, LU Zheng, SU Bin, YAN Minggao, Effect of zirconinm on the mechanical properties of a super-high strength aluminum alloy, Chinese Journal of Materials Research, 16(4), 406(2002)
12 (杨守杰, 谢优华, 朱 娜, 戴圣龙, 陆 政, 苏 彬, 颜鸣皋, Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响, 材料研究学报, 16(4), 406(2002))
13 T. S. Srivatsan, S. Sriram, D. Veeraraghavan, V.K. Vasudevan,Microstructure tensile deformation and fracture behaviour of aluminum alloy 7055, Journal of Materials Science, 32, 2883(1997)
14 GOU Guoqing,HUANG Nan, CHEN Hui, LI Da, MENG Lichun, Research on corrosion behavior of welded joint of A7N01-T5 aluminum alloy for high-speed train, Transactions of the China Welding Institution, 32((10), 17(2011)
14 (苟国庆, 黄 楠, 陈 辉, 李 达, 孟立春, 高速列车A7N01S-T5铝合金焊接接头盐雾腐蚀行为研究, 焊接学报, 32(10), 17(2011))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.