Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (5): 389-393    DOI: 10.11901/1005.3093.2014.802
  本期目录 | 过刊浏览 |
Al85Ni5Y6Fe2Co2非晶态及部分晶化态合金的磁性*
杨红旺(),沈莹莹,张鹏,王瑞春,李荣德
沈阳工业大学材料科学与工程学院 沈阳 110870
Magnetisms of Fully Amorphous and Partially Crystallized Amorphous Al85Ni5Y6Fe2Co2 Alloys
Hongwang YANG(),Yingying SHEN,Peng ZHANG,Ruichun WANG,Rongde LI
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

杨红旺,沈莹莹,张鹏,王瑞春,李荣德. Al85Ni5Y6Fe2Co2非晶态及部分晶化态合金的磁性*[J]. 材料研究学报, 2015, 29(5): 389-393.
Hongwang YANG, Yingying SHEN, Peng ZHANG, Ruichun WANG, Rongde LI. Magnetisms of Fully Amorphous and Partially Crystallized Amorphous Al85Ni5Y6Fe2Co2 Alloys[J]. Chinese Journal of Materials Research, 2015, 29(5): 389-393.

全文: PDF(735 KB)   HTML
摘要: 

用振动样品磁强计测量了急冷态的Al85Ni5Y6Fe2Co2完全非晶态和不完全非晶态的磁性。结果表明, 两种合金的磁化曲线均过原点并穿过一、三象限, 没有剩磁和矫顽力。该合金完全非晶态和不完全非晶态的磁性均为顺磁性与抗磁性的叠加。对曲线线性部分进行拟合后得到磁化率, 完全非晶的磁化率为2.41×10-4, 而不完全非晶的磁化率是2.73×10-4, 可见不完全非晶更容易磁化。将完全非晶合金在330℃和390℃退火处理后的磁性测试结果表明, 随退火温度的提高合金的线性部分磁化率由2.53×10-4提高到2.81×10-4, 即在390℃退火的合金更容易磁化。

关键词 金属材料非晶合金铝合金磁性晶化    
Abstract

Magnetic characteristics of the as-quenched fully and partially amorphous Al85Ni5Y4Fe2Co2 alloy were measured by VSM (vibrating sample magnetometer). The results show that the magnetization curves of the two alloys pass the origin of coordinates and extend through the first and the third quadrants, no remanence and coercivity were observed. The magnetism of the fully and partially amorphous alloys is all a combination of paramagnetism and diamagnetism. The magnetic susceptibility of the fully amorphous alloy is 2.41×10-4 and that of the partially amorphous alloy is 2.73×10-4. The magnetisms of the alloys annealed at 330℃and 390℃ were also tested respectively. The magnetic susceptibility of the linear portion of the magnetization curve increases from 2.53×10-4 to 2.81×10-4 as the annealing temperature rises from 330℃ to 390℃. The hybrid microstructures of the alloys may account for the evolution of the corresponding magnetisms.

Key wordsmetallic materials    amorphous alloy    Al alloy    magnetism    crystallization
收稿日期: 2014-12-17     
基金资助:*国家自然科学基金51171119,辽宁省自然科学基金2013020084,辽宁省高等学校杰出青年学者成长计划LJQ2014015和沈阳科技局发展项目1091177-1-00资助。
作者简介: 杨红旺
图1  急冷态Al85Ni5Y6Fe2Co2合金的XRD谱
图2  Al85Ni5Y6Fe2Co2合金的升温DSC曲线
图3  完全非晶态Al85Ni5Y6Fe3Co2的磁化曲线
图4  部分晶化态Al85Ni5Y6Fe2Co2的磁化曲线
图5  Al85Ni5Y6Fe2Co2退火态的XRD谱
图6  Al85Ni5Y6Fe2Co2 在330℃退火后的磁化曲线
图7  Al85Ni5Y6Fe2Co2 在390℃退火后的磁化曲线
Status of alloys Susceptibility of linear Crystallinity
Completely amorphous 2.41×10-4 0
Partially amorphous 2.73×10-4 28.6%
330℃ annealed alloy 2.53×10-4 24.8%
390℃ annealed alloy 2.81×10-4 40.9%
表1  不同状态下的合金磁化率及晶化度
1 Duwez P,Lin S C H, Amorphous ferromagnetic phase in iron carbon phosphorus alloys, Applied Physics, 38(10), 4096(1967)
2 Yoshizawa Y,Oguma S, Yamauchi K, New Fe-based soft magnetic alloys composed of ultrafine grain structure, Journal of Applied Physics, 64(10), 6044(1988)
3 Inoue A,Katsuya A, Multicomponent Co-based amorphous alloys with wide supercooled liquid region, Materials Transactions, JIM, 37(6), 1332(1996)
4 Hasegawa R,Advances in amorphous and nanocrystalline magnetic materials, Journal of Magnetism and Magnetic Materials, 304, 187(2006)
5 LI Zhihua,Recent development of Fe-based amorphous alloy used for power distribution transformers, Metallic Functional Materials, 7(5), 16(2000)
5 (李志华, 配电变压器用铁基非晶合金最新进展, 金属功能材料, 7(5), 16(2000))
6 XU Zewei,Application of new soft magnetic materials and new core constructions in electronic transformer, Metallic Functional Materials, 12(1), 30(2005)
6 (徐泽玮, 新软磁材料和新磁芯结构在电子变压器中的应用, 金属功能材料, 12(1), 30(2005))
7 LONG Yi,YE Rongjing, WAN Farong, LI Chunhe, Progress in research of magnetic glassy alloys, Metallic Functional Materials, 9(4), 1(2009)
7 (龙 毅, 叶荣晶, 万发荣, 李春和, 磁性金属玻璃研究进展, 金属功能材料, 9(4), 1(2009))
8 WANG Lijun,CHEN Chuanbiao, ZHANG Guoxiang, Amorphous core and magnetic pulse compression for a metal vapor laser, Metallic Functional Materials, 6(2), 63(1999)
8 (王立军, 陈传彪, 张国祥, 磁压缩激光器与非晶微晶铁芯, 金属功能材料, 6(2), 63(1999))
9 H?ubler P,Baumann F, Crystallization of amorphous metal films within and without magnetic field, Zeitschrift für Physik B Condensed Matter, 38(1), 43(1980)
10 Marín P,López M, Ruiz-González L, Magnetic field influence on nano-crystallization process of FeCoSiBCuNb alloys, Physics Applications and Materials Science, 203(6), 1271(2006)
11 Kim C K,Microstructural evolution of amorphous cobalt-rich magnetic alloys during magnetic field annealing, Materials Science and Engineering B, 38(1-2), 194(1996)
12 Wang Z Y,Xu H, Ni J S, Effect of high magnetic field on the crystallization of Nd2Fe14B/α-Fe nanocomposite magnets, Rare Metals, 25(4), 337(2006)
13 ZHAO Tiemin,HAO Yunyan, XU Xiaorong, YANG Yuansheng, Effect of magnetic field treatment on crystallization and magnetic properties of melt-spun NdFeB powders, Chinese Journal of Materials Research, 12(5), 558(1998)
13 (赵铁民, 郝云彦, 徐孝荣, 杨院生, 磁场热处理对NdFeB非晶快淬粉末的晶化与磁性的影响, 材料研究学报, 12(5), 558(1998))
14 Inoue A, Ohtera K, Tsai A P, New amorphous-alloys with good ductility in Al-Y-M and Al-La-M(M=Fe, Co, Ni, Cu) systems, Japanese Journal of Applied Physics Part2-Letters, 27(3), L280(1988)
15 He Y,Poon S J, Shiflet G J, Synthesis and properties of metallic glasses that contain aluminum, Science, 241(4873), 1640(1988)
16 Inoue A,Sobu S, Louzguine D V, Ultrahigh strength Al-based amorphous alloys containing Sc, Materials Research, 19(5), 1593(2004)
17 LUO Lei,Effect of high magnetic field on the crystallization of Al-Y-Fe amorphous alloys, Master's Thesis, Shenyang University of Technology (2014)
17 (罗 磊, 稳恒强磁场对Al-Y-Fe非晶态合金晶化的影响研究, 硕士学位论文, 沈阳工业大学(2014))
18 Gao M C,Shiflet G J, Devitrification phase transformations in amorphous Al85Ni7Gd8 alloy, Intermetallics, 10(11-12), 1131(2002)
19 Gloriant T,Gich M, Surinach S, Evaluation of the volume fraction crystallised during devitrification of Al-based amorphous alloys, Materials Science Forum, 343, 365(2000)
20 Yang H W,Wen J, Quan M X, Evaluation of the volume fraction of nanocrystals devitrified in Al-based amorphous alloys, Journal of Non-Crystalline Solids, 355, 235(2009)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.