Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 149-154    DOI: 10.11901/1005.3093.2014.339
  本期目录 | 过刊浏览 |
功能化离子液体的合成及其溶解稻草体系对酚醛树脂的改性
郭立颖(),张彬,王志明,马秀云,黄鹏程
沈阳工业大学石油化工学院 辽阳 111003
Synthesis of Functional Ionic Liquids as Solvent for Straw and Application in Modification of Phenolic Resin
Liying GUO(),Bin ZHANG,Zhiming WANG,Xiuyun MA,Pengcheng HUANG
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China
引用本文:

郭立颖,张彬,王志明,马秀云,黄鹏程. 功能化离子液体的合成及其溶解稻草体系对酚醛树脂的改性[J]. 材料研究学报, 2015, 29(2): 149-154.
Liying GUO, Bin ZHANG, Zhiming WANG, Xiuyun MA, Pengcheng HUANG. Synthesis of Functional Ionic Liquids as Solvent for Straw and Application in Modification of Phenolic Resin[J]. Chinese Journal of Materials Research, 2015, 29(2): 149-154.

全文: PDF(1905 KB)   HTML
摘要: 

合成了氯化1-(2-羟乙基)-3-甲基咪唑离子液体[HeMIM]Cl、溴化1-乙胺基-3-甲基咪唑离子液体[AeMIM]Br和氯化1-羧乙基-3-甲基咪唑离子液体[CeMIM]Cl三种功能化咪唑离子液体, 并分别进行了红外与氢核磁结构表征。用这三种离子液体溶解稻草, 并将溶解体系原位与苯酚和甲醛共混制备出酚醛复合材料, 研究了离子液体种类对稻草溶解率和酚醛树脂性能的影响。结果表明, 用离子液体及其溶解稻草产物制备的酚醛复合材料性能得到明显的改善。[CeMIM]Cl溶解的效果最好, 用其溶解稻草产物制备的酚醛复合材料游离醛含量最低。用[AeMIM]Br溶解稻草产物制备的酚醛复合材料力学性能最好, 拉伸强度从3.28 MPa提高到9.48 MPa, 冲击强度由0.93 kJ/m2提高到5.88 kJ/m2

关键词 有机高分子材料功能化离子液体溶解稻草酚醛复合材料游离醛含量拉伸强度冲击强度    
Abstract

Three Functional ionic liquids of 1-(2- hydroxyethyl)-3-methyl imidazole chloride ([HeMIM]Cl), 1-ethylamine-3-methyl imidazole bromide ([AeMIM]Br) and 1-carboxy ethyl-3- methyl imidazole chloride ([CeMIM]Cl) were synthesized and characterized by FTIR and HNMR. Then straw was dissolved in the three ionic liquids respectively to produce three solutions of straw, which were further in situ blended with phenol and formaldehyde to prepare phenolic resin composites. The effect of the type of ionic liquids on the dissolution rate of straw and the effect of solutions of straw on the properties of phenolic resin were investigated. The results show that the properties of phenolic resin composites were improved obviously by the three solutions of straw. Among the three ionic liquids, the [CeMIM] Cl is the best solvent for straw to produce the solution, with which the lowest free formaldehyde containing phenolic resin composites may be synthesized; while phenolic resin composite synthesized with the [AeMIM] Cl solution of straw exhibits the best mechanical performance: its tensile strength increased from 3.28 MPa to 9.48 MPa and impact strength increased from 0.93 kJ/m2 to 5.88 kJ/m2 respectively in comparison with those of the ordinary phenolic resin.

Key wordsorganic polymer materials    functional ionic liquid    dissolution    straw    phenolic resin composites    free formaldehyde content    tensile strength    impact strength
收稿日期: 2014-07-13     
基金资助:* 国家自然科学基金51203091, 辽宁省教育厅一般项目L2014037和大学生创新创业计划训练项目101422013068资助。
图1  三种功能化咪唑离子液体化学结构图
图2  离子液体种类对稻草溶解率的影响
图3  偏光显微镜下离子液体[CeMIM]Cl溶解稻草过程
Sample No. Ionic liquids (ILs) Mass ratio of ILs to straw Tensile strength(MPa) Impact strength (kJ/m2) Relative hardness(%) Free fomaldehyde(%)
1 3.28 0.93 92 3.64
2 [HeMIM]Cl 10:1 7.54 3.58 94 2.22
3 [HeMIM]Cl 15:1 7.86 4.12 91 2.14
4 [HeMIM]Cl 20:1 8.44 5.69 93 2.07
5 [HeMIM]Cl 25:1 8.21 5.72 90 2.02
6 [HeMIM]Cl 30:1 8.09 5.86 92 2.04
7 [AeMIM]Br 20:1 9.48 5.88 93 1.16
8 [CeMIM]Cl 20:1 9.09 5.79 91 0.92
表1  离子液体种类及其与稻草质量比对酚醛树脂性能的影响
图4  原酚醛树脂、稻草与酚醛复合材料红外光谱图(a-原酚醛树脂; b-稻草; c-酚醛复合材料)
图5  稻草与酚醛复合材料XRD谱图(a-稻草; b-酚醛复合材料)
图6  原酚醛树脂与酚醛复合材料SEM像(a-原酚醛树脂; b-酚醛复合材料)
1 X. B. Lu, Q. Zhang, L. Zhang, J. Li,Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid, Electrochemistry Communications, 8(5), 874(2006)
2 P. Kubisa,Application of ionic liquids as solvents for polymerization processes, Progress in Polymer Science, 29(1), 3(2004)
3 A. M. Scruto, W. Leitner,Expanding the useful range of ionic liquids: melting ponit depression of organic salts with carbon dioxide for biphasic catalytic reactions, Chemistry Communication, 35, 3681(2006)
4 J. W. Zhang, K. L. Hong, J. W. Mays,Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids, Macromolecules, 35(15), 5738(2002)
5 W. Zhao, G. H. He, L. L. Zhang, J. Ju, H. Dou, F. Nie, G. N. Li, H. J. Liu,Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2, Journal of Membrane Science, 350(1-2), 279(2010)
6 QIAO Jichao,HU Xiaoling, GUAN Ping, Reasearch progress of phenol-formaldehyde resin adhesive, China Adhesives, 15(7), 45(2006)
6 (乔吉超, 胡小玲, 管 萍, 酚醛树脂胶粘剂的研究进展, 中国胶粘剂, 15(7), 45(2006))
7 DU Ying,ZHOU Taiyan, WANG Zhe, REN Youfang, CAI Xiaoyan, Composite modify of phenol formaldehyde resin adhesive, Polymer Bulletin, 2, 79(2012)
7 (杜 郢, 周太炎, 王 哲, 任筱芳, 蔡晓燕, 酚醛树脂胶粘剂的复合改性, 高分子通报, 2, 79(2012))
8 J. W. Wang, M. G. Laborie, M. P. Wolcott,Correlation of mechanical and chemical cure development for phenol–formaldehyde resin bonded wood joints, Thermochimica Acta, 513, 20(2011)
9 Y. B. Hoong, M. T. Paridah, Y. F. Loh, H. Jalaluddin, L. A. Chuah, A new source of natural adhesive: Acacia mangium bark extracts co-polymerizedwithphenol formalde-hyde (PF) forbonding Mempisang veneers 1. International Journal of Adhesion & Adhesives, 31, 164(2011)
10 T. Tabarsa, S. Jahanshahi, A. Ashori,Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive, Composites: Part B, 42(2), 176(2011)
11 GUO Liying,SHI Tiejun, LI Zhong, Solubilities of two kinds of imidazolium ionic liquids for fir powder, Journal of Chemical Industry and Engineering, 59(5), 1299(2008)
11 (郭立颖, 史铁钧, 李 忠, 两种咪唑类离子液体对杉木粉的溶解性能, 化工学报, 59(5), 1299(2008))
12 GUO Liying,SHI Tiejun, LI Zhong, DUAN Yanpeng, Influence of ionizes liquid and flr Powder on Properties of Phenol-formaldehyde adhesive, Chin. J. Mater. Res., 23(3), 311(2009)
12 (郭立颖, 史铁钧, 李 忠, 段衍鹏, 离子液体与杉木粉对酚醛胶粘剂性能的影响, 材料研究学报, 23(3), 311(2009))
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张光成, 袁天祥, 马德林, 周萍, 郭超群, 周芸, 左孝青. 410L430L泡沫钢性能的比较[J]. 材料研究学报, 2021, 35(8): 597-605.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.