Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 729-736    DOI: 10.11901/1005.3093.2015.115
  本期目录 | 过刊浏览 |
Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材的性能
张香丽(),许晓静,凌智勇,蒋伟
江苏大学 先进制造与现代装备技术工程研究院 镇江 212013
Microstructure and Mechanical Properties of an Extruded Al-Alloy Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr
Xiangli ZHANG(),Xiaojing XU,Zhiyong LING,Wei JIANG
Institute of Advanced Manufacturing and Modern Equipment Technology Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

张香丽,许晓静,凌智勇,蒋伟. Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材的性能[J]. 材料研究学报, 2015, 29(10): 729-736.
Xiangli ZHANG, Xiaojing XU, Zhiyong LING, Wei JIANG. Microstructure and Mechanical Properties of an Extruded Al-Alloy Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr[J]. Chinese Journal of Materials Research, 2015, 29(10): 729-736.

全文: PDF(4048 KB)   HTML
摘要: 

研究了Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材在固溶-T652和预回复-固溶-T652时的组织和性能。结果表明: 该合金在121℃×24 h时效制度下, 预回复退火处理可有效细化晶粒(从9.76 μm减小到5.56 μm), 降低晶界平均角度(从23.59°降低至17.41°), 显著提高低角度晶界百分比(从53%提高到67%), 提高位错强化, 并显著抑制再结晶的发生; 与固溶-T652相比, 预回复-固溶-T652工艺在不降低强度的情况下可提高其晶间和剥落腐蚀性能(最大晶间腐蚀深度从125.0 μm减少到91.4 μm, 剥落腐蚀从EB级提高到EA级); 在预回复-固溶-T652状态下合金的抗拉强度达到728 MPa, 预回复退火处理能提高合金的强度。位错强化和低角度晶界强化是合金的主要强化机制。

关键词 金属材料超高强铝合金预回复组织性能    
Abstract

Effect of solid solution-T652 treatment and pre-recovery-solid solution-T652 treatment on microstructure and mechanical properties of an extruded Al-alloy Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr was studied. The results show that after a pre-recovery-annealing treatment and then a post-aging at 121oC for 24 h the grain size of the extrusion can be refined from 9.76 μm to 5.56 μm; the average grain boundary angle can be reduced from 23.59° to 17.41°, i.e.the percentage of low angle grain boundary is significantly enhanced from 53% to 67%, therewith, the dislocation strengthening is increased, and the recrystallization process may be suppressed. Compared with solid solution-T652, the pre-recovery-annealing treatment can enhance the corrosion resistance of the alloy, i.e. the maximum corrosion depth may be reduced from 125.0 μm to 91.4 μm, thus its exfoliation corrosion rating increased from EB to EA grade, while the alloy maintained a high strength. The strength of the alloy after the pre-recovery-solid solution plus T652 treatment is up to 728 MPa. Dislocation strengthening and low angle grain boundary strengthening are the main strengthening mechanisms.

Key wordsmetallic materials    high-strength aluminum alloy    pre-recovery-annealing treatment    microstructure    mechanical properties
收稿日期: 2015-03-06     
基金资助:* 江苏大学研究生科研创新计划项目KYXX_0031资助。
Zn Mg Cu Zr Sr Al
10.78 2.78 2.59 0.22 0.047 Bal.
表1  实验用合金的实测成分
图1  实验合金固溶-T652和预回复-固溶-T652处理后的OM、SEM组织图
Label Mg Al Cu Zn Fe
A 0.13 73.17 16.0 1.69 9.0
B 1.34 81.93 14.44 2.29 0
C 2.39 92.87 1.10 3.65 0
D 0.43 72.95 16.25 2.22 8.15
E 3.29 91.40 1.20 4.11 0
表2  实验合金组织的化学成分
图2  实验合金固溶-T652处理后的分析谱、预回复-固溶-T652处理后的分析谱、固溶-T652处理后的半高峰宽以及预回复-固溶-T652处理后的半高峰宽
图3  根据XRD数据计算经固溶-T652处理和预回复-固溶-T652处理试样的XRD相干衍射区尺寸和晶格应变
Heat treatment Average grain size of coherent diffraction region d/nm Lattice strain e 2 1 / 2 /% Dislocation density ρ/1014×m-2 Dislocations strengthening σρ /MPa
Solid-solution+T652 92.81 9.02×10-4 1.18 59.25
Pre-recovery-annealing+ solid-solution+T652 72.67 10.54×10-4 1.76 72.39
表3  从XRD数据计算出的一些微观结构与力学性能的特征参数
图4  固溶-T652处理和预回复-固溶-T652处理后合金试样的EBSD组织、晶界角度分布和晶粒尺寸分布图
Heat treatment ≥1° 1°-15° ≥15°
L θ LLAGB 1-f θLAGB LHAGB fH θHAGB
Solid-solution+T652 9.76 23.59 0.22 0.53 5.66 12.98 0.47 43.74
Pre-recovery-annealing+ solid-solution+T652 5.56 17.41 0.35 0.67 3.80 12.89 0.33 44.88
表4  从EBSD分析计算得到的平均晶粒尺寸(L)、高及低角度晶界的百分比、高及低角度晶界的角度平均值
Heat treatment Electrical conductivity/%IACS Hardness /HV Tensile strength /MPa Elongation/%
Solid-solution +T652 26.21 220.1 706 9.8
Pre-recovery-annealing+solid-solution+T652 26.98 229.1 728 7.0
表5  经不同热处理后合金的电导率、硬度、抗拉强度和延伸率
图5  不同热处理下合金的晶间腐蚀形貌(a)固溶-T652; (b)预回复-固溶-T652
图6  合金在不同热处理下的剥落腐蚀形貌(a)固溶-T652; (b)预回复-固溶-T652
Heat treatment σ ρ + σ L A G B σ H A G B σ ρ + σ L A G B + σ H A G B
Solid solution-T652 100.17 8.79 108.96
Pre-recovery-annealing- solid solution-T652 122.35 9.77 132.12
表6  不同热处理下合金的晶界强化与晶粒内部位错强化
1 LUO Yong,Research on solid solution and aging technology optimization and properties of high hardenability and high strength 7085 type aluminum alloy, PhD thesis, (Zhenjiang, Jiangsu University, 2012)
1 (罗 勇, 高淬透高强7085型铝合金固溶时效工艺优化与性能研究, 博士论文, (镇江, 江苏大学, 2012))
2 LUO Yong,XU Xiaojing, WU Guichao, ZHANG Yunkang, SONG Tao, WANG Bing, ZHANG Fubao, CHENG Cheng, FEI Zhendan, Effect of enhanced-Solid-Solution on intergranular corrosion and exfoliation corrosion properties of 7085 aluminum alloy, Rare Metal Materials and Engineering, 41(S2), 262(2012)
2 (罗 勇, 许晓静, 吴桂潮, 张允康, 宋 涛, 王 彬, 张福豹, 成 城, 费震旦, 强化固溶处理对7085铝合金晶间腐蚀和剥落腐蚀性能的影响, 稀有金属材料与工程, 41(S2), 262(2012))
3 LI Chengbo,ZHANG Xinming, LIU Shengdan, WU Zezheng, DENG Yunlai, Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy, Chinese Journal of Materials Research, 27(5), 454(2013)
3 (李承波, 张新明, 刘胜胆, 吴泽政, 邓运来, 7085铝合金剥落腐蚀的淬火敏感性, 材料研究学报, 27(5), 454(2013))
4 SONG Jixiao,Study of influence of heat treatment on microstructure and properties of 7A04 aluminum alloy, Master Thesis, (Chengdu, Southwest Jiao Tong University, 2011)
4 (宋继晓, 热处理工艺对7A04铝合金组织和性能的影响研究, 硕士学位论文(成都, 西南交通大学, 2011))
5 XU Xiaojing,ZHANG Yunkang, DENG Pingan, WU Yao, ZHANG Zhenqiang, LU Yudong, Effect of pre-recovery-annealing treatment on microstructure and properties of extruded 7085 aluminum alloy, Transactions of Materials and Heat Treatment, 35(8), 36(2014)
5 (许晓静, 张允康, 邓平安, 吴 瑶, 张振强, 卢予东, 预回复退火对7085铝合金挤压材组织和性能的影响, 材料热处理学报, 35(8), 36(2014))
6 DAI Xiaoyuan,XIA Changqing, LIU Changbin, GU Yi, Effects of solution and aging process on microstructure and mechanical properties of 7xxx aluminum alloy, Transactions of Materials and Heat Treatment, 28(4), 59(2007)
6 (戴晓元, 夏长清, 刘昌斌, 古 一, 固溶处理及时效对7xxx铝合金组织与性能的影响, 材料热处理学报, 28(4), 59(2007))
7 GB/T7998-2005, Test method for inter-granular corrosion of aluminum alloys, 2005
7 (GB/T7998-2005, 铝合金晶间腐蚀测定方法, 2005)
8 ASTM G110-1992(2009),Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminum Alloys by Immersion in Sodium Chloride + Hydrogen Peroxide Solution, 1992
9 GB/T 22639-2008, Test method of exfoliation corrosion for wrought aluminum and aluminum alloys, 2008
9 (GB/T 22639-2008, 铝合金加工产品的剥落腐蚀试验方法, 2008)
10 ASTM G34-2001(2007), Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series Aluminum alloys(EXCO test), 2007
11 CHEN Xiaoming,SONG Renguo, LI Hongxia, REN Jianping, ZHANG Yu, Study on double-peak aging in 7075 aluminum alloy, Transactions of Materials and Heat Treatment, 31(2), 80(2010)
11 (陈小明, 宋仁国, 李红霞, 任建平, 张 宇, 7075铝合金双峰时效研究, 材料热处理学报, 31(2), 80(2010))
12 Zhao Y H,Liao X Z, Jin Z, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Materialia, 52(15), 4589(2004)
13 Seidman D N,Emmanuelle A M, Dunand D C, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys, Acta Materialia, 50(16), 4021(2002)
14 Ma K K,Wen H M, Tao H, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Materialia, 62(0), 141(2014)
15 Hansea N,Huang X, Microstructure and flow stress of polycrystals and single crystals, Acta Materialia, 46(5), 1827(1998)
16 XU Xiaojing, ZHANG Xuefeng, CAO Jinqi, WANG Jianmin, JIANG Weiping, Tensile properties of the 2024 Al alloy processed by conventional solid-solution and subsequent equal-channel angular pressing (ECAP), Rare Metal Materials and Engineering, 35(S2), 395(2006)
16 (许晓静, 张雪峰, 曹进琪, 汪建敏, 蒋维平, 常规固溶态2024铝合金ECAP加工后的拉伸性能, 稀有金属材料与工程, 35(S2), 395(2006))
17 Cabibbo M, Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys, Materials Science and Engineering A, 560(0), 413(2013)
18 Luo P, McDonald D T, Xu W, Palanisamy S, Dargusch M S, Xia K, A modified Hall-Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing, Scripta Materialia, 66(10), 785(2012)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.