Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 567-572    DOI: 10.11901/1005.3093.2013.897
  本期目录 | 过刊浏览 |
TaC增强铁基梯度复合材料的原位生成及其磨粒磨损特性*
赵娜娜1,许云华1(),钟黎声2,黄星1,孟文可1,叶芳霞1
1. 西安理工大学材料科学与工程学院 西安 710048
2. 西北工业大学 凝固技术国家重点实验室 西安 710072
Abrasive Wear Characteristics of Surface Gradient Composites of TaC Reinforced Iron Matrix Prepared by In-Situ Technology
Nana ZHAO1,Yunhua XU1,**(),Lisheng ZHONG2,Xing HUANG1,Wenke MENG1,Fangxia YE1
1. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

赵娜娜,许云华,钟黎声,黄星,孟文可,叶芳霞. TaC增强铁基梯度复合材料的原位生成及其磨粒磨损特性*[J]. 材料研究学报, 2014, 28(8): 567-572.
Nana ZHAO, Yunhua XU, Lisheng ZHONG, Xing HUANG, Wenke MENG, Fangxia YE. Abrasive Wear Characteristics of Surface Gradient Composites of TaC Reinforced Iron Matrix Prepared by In-Situ Technology[J]. Chinese Journal of Materials Research, 2014, 28(8): 567-572.

全文: PDF(2862 KB)   HTML
摘要: 

以高纯钽板为原料, 采用原位反应法在HT300表面制备了碳化钽增强表面梯度复合材料。用扫描电子显微镜、X射线衍射仪、显微硬度计和磨粒磨损试验机对复合层的微观形貌、物相组成、显微硬度以及磨粒磨损性能进行了表征。结果表明: 所得复合层的总厚度约为475 μm。最表层为碳化钽致密陶瓷层, 厚度约为170 μm, 其颗粒尺寸小于1 μm, 体积分数近似95%, 显微硬度最高值达2328HV0.1; 次表层为碳化钽颗粒分散层, 其颗粒尺寸为0.5~1.5 μm, 体积分数从90%逐渐减小至基体, 显微硬度由915HV0.1降低至410HV0.1; 复合层与基体之间呈现良好的冶金结合。铁基表面碳化钽陶瓷增强梯度复合材料的耐磨性比灰口铸铁基体有大幅度提高; 复合层的磨损是局部塑性变形、显微切削和增强颗粒的部分破碎等因素综合作用的结果。

关键词 复合材料原位反应致密陶瓷磨粒磨损    
Abstract

Tantalum carbide gradient composite was fabricated via in-situ reaction of pure tantalum plate with gray cast at high temperature. The morphology, phase constituent, microhardness, and relative abrasion resistance of the composite were characterized by scanning electron microscopy, X-ray diffraction, microhardness tester and abrasive wear testing machine. The results show that the thickness of the gradient composite is about 475 μm. The cast 170 μm thick surface layer is a dense ceramic layer consisted of ~95% submicron TaC particles, and the highest micro-hardness value of which is 2328HV0.1; In the sub-layer, there exists a gradient distribution of TaC particles from 90% to 0% in volume fraction, correspondingly the microhardness value decreased from 915HV0.1 to 410HV0.1, and the size of the TaC particles increased to 0.5-1.5 μm; the interface between the composite and matrix exhibits a perfect metallurgical bonding. The TaC reinforced iron matrix surface gradient composite shows far superior wear resistance than the gray cast iron. The wear mechanism is mainly related with the local plastic deformation, micro cracking caused by misrouted broken carbide particles.

Key wordscomposite    in-situ reaction    dense ceramic    abrasive wear
收稿日期: 2013-11-26     
基金资助:* 国家高技术研究发展计划项目2013AA031803和国家自然科学基金项目51374169资助。
Materials C Si Mn P S Fe Al Cu Ta
HT300 2.57 <1.03 <1.04 <0.046 <0.018 Balance - - -
Ta plate - 0.06 <0.03 - - - 0.06 0.03 Balance
表1  实验原材料HT300和钽板的化学成分
图1  Fe-Ta-C体系的差热分析曲线
图2  TaC增强铁基表面梯度复合材料的XRD图谱
图3  TaC增强铁基表面梯度复合材料组织宏观形貌图
图4  TaC增强铁基表面梯度复合材料不同区域的组织形貌
图5  不同复合层显微硬度的变化
图6  TaC增强铁基表面梯度复合材料不同反应层的相对耐磨性
图7  载荷为5 N时的磨损形貌图
1 C. S. Ramesh, A. Ahamed,Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites, Wear, 271(9-10), 1928(2011)
2 ZHAO Yutao, DAI Qixun, Metal Matrix Composites (Beijing, Mechanical Industry Press, 2007) p.1
2 (1)
3 J. Wang, Y. S Wang, Y. C. Ding,Production of (Ti, V)C reinforced Fe matrix composites, Materials Science and Engineering: A, 454, 75(2007)
4 S. T. Gu, G. Z. Chai, H. P Wu, Y. M. Bao,Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis, Materials and Design, 39, 72(2012)
5 H. Yan, P. L. Zhang, Z. S. Yu, C. G. Li, R. D. Li,Development and characterization of laser surface cladding (Ti, W)C reinforced Ni-30 Cu alloy composite coating on copper, Optics Laser Technology, 44, 1351(2012)
6 M. Li, J. Huang, Y. Y. Zhu, Z. G. Li,Effect of heat input on the microstructure of in-situ synthesized TiN-TiB/Ti based composite coating by laser cladding, Surface Coatings Technology, 206(19-20), 4021(2012)
7 L. Q. Wang, J. S. Zhou, Y. J. Yu, C. Guo, J. M. Chen,Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding, Applied Surface Science, 258(17), 6697(2012)
8 C. Guo, J. M. Chen, J. S. Zhou, J. R. Zhao, L. Q. Wang,Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating, Surface Coatings Technology, 206(8-9), 2064(2012)
9 J. X. Yang, F. L. Liu, X. H. Miao, F. Yang,Influence of laser cladding process on the magnetic properties of WC-FeNiCr metal-matrix composite coatings, Journal of Materials Processing Technology, 212(9), 1862(2012)
10 S. F. Zhou, X. Q. Dai, H. Z. Zheng,Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding, Optics Laser Technology, 44(10), 190(2012)
11 R. G. Song, C. Wang, Y. Jiang, H. Li, G. Lu, Z. X. Wang,Microstructure and properties of Al2O3/TiO2 nanostructured ceramic composite coatings prepared by plasma spraying, Journal of Alloys and Compounds, 544, 13(2012)
12 S. Barzilai, A. Raveh, N. Frage,Inter-diffusion of carbon into niobium coatings deposited on graphite, Thin Solid Films, 496(12), 450(2006)
13 S. Barzilai, N. Frage, A. Raveh,Niobium layers on graphite: Growth parameters and thermal annealing effects, Surface Coatings Technology, 200(14-15), 4646(2006)
14 C. N. Zoita, L. Braic, A. Kiss, M. Braic,Characterization of NbC coatings deposited by magnetron sputtering method, Surface Coatings Technology, 204(12-13), 2002(2010)
15 X. Jin, L. Z. Wu, Y. G. Sun, L. C Guo,Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials, Materials Science and Engineering A, 509(1-2), 63(2009)
16 JIN Xin,WU Linzhi, SUN Yuguo, GUO Licheng, YU Hongjun, Experimental investigation of the quasi-static mixed-mode crack initiation in NiCr/ZrO2 functionally graded materials by digital image correlation, Acta Materiae Compositae Sinica, 26(6), 150(2009)
16 (金 鑫, 吴林志, 孙雨果, 果立成, 于红军, NiCr/ZrO2功能梯度复合材料中混合型准静态裂纹启裂的数字散斑相关方法实验研究, 复合材料学报, 26(6), 150(2009))
17 YU Sirong,REN Luquan, ZHANG Xinping, LIU Yaohui, HE Zhenming, Structure and properties of hypereutectic Al-10%Fe alloy functionally gradient materials, Metallic Functional Materials, 7(6), 5(2000)
17 (于思荣, 任露泉, 张新平, 刘耀辉, 何镇明, A-10%Fe合金梯度材料的组织与性能, 金属功能材料, 7(6), 5(2000))
18 Z. F. Ni, Y. S. Sun, F. Xue, J. Bai, Y. J. Lu,Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate , Materials and Design, 32(3), 1462(2011)
19 K. Q. Feng, M. Hong, Y. Yang, W. J.Wang,Combustion synthesis of VC/Fe composites under the action of an electric field , International Journal of Refractory Metals and Hard Materials, 27(5), 852(2009)
20 G. S. Zhang, J. D. Xing, Y. M. Gao,Impact wear resistace of WC/hadfield steel composite and its interfacial characteristics , Wear, 260(7-8), 728(2006)
21 Z. Y. Xiao, L. Fang, W. Zhang, M. Shao, Y. Y. Li,Fabrication of NbCp-Reinforced iron matrix composites by PM techniques and its warm compaction , Journal of Iron and Steel Research, 14(5), 66(2007)
22 X. H. Zhang, G. E. Hilmas, W. G. Fahrenholtz,Densification and mechanical properties of TaC-based ceramics, Materials Science and Engineering: A, 501(1-2), 37(2009)
23 J. Wang, Y. S. Wang, Y. C. Ding, W. Gong,Microstructure and wear-resistance of Fe-(Ti, V)C composite , Material and Design, 28(7), 2207(2007)
24 A. I. Z. Farahat,Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steels, Journal of Materials Processing Technology, 204(1-3), 365(2008)
25 ZHONG Lisheng, Preparation of fifth subgroup B (VB) carbide particles reinforced iron matrix composites by in-situ and its abrasive wear performance studies, Doctoral Dissertation, Xi'an University of Architecture and Technology, 2011
25 (钟黎声, 第五副族碳化物颗粒增强铁基复合材料的原位制备, 博士学位论文, 西安建筑科技大学, 2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.