|
|
高压扭转大塑性变形Al–Mg合金中的晶界结构* |
蒋婷慧1,刘满平1( ),谢学锋1,王俊1,吴振杰1,刘强1,Hans J. Roven2 |
1. 江苏大学材料科学与工程学院 江苏省高端结构材料重点实验室 镇江 212013 2. 挪威科技大学(NTNU)材料科学与工程学院 特隆赫姆7491 挪威 |
|
Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion |
Tinghui JIANG1,Manping LIU1,**( ),Xuefeng XIE1,Jun WANG1,Zhenjie WU1,Qiang LIU1,J. Roven Hans2 |
1. School of Materials Science and Engineering, Jiangsu Province Key Laboratory of High-end Structural Materials, Jiangsu University, Zhenjiang 212013 2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway |
引用本文:
蒋婷慧,刘满平,谢学锋,王俊,吴振杰,刘强,Hans J. Roven. 高压扭转大塑性变形Al–Mg合金中的晶界结构*[J]. 材料研究学报, 2014, 28(5): 371-379.
Tinghui JIANG,
Manping LIU,
Xuefeng XIE,
Jun WANG,
Zhenjie WU,
Qiang LIU,
J. Roven Hans.
Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion[J]. Chinese Journal of Materials Research, 2014, 28(5): 371-379.
1 | I. Sabirov, M. Y.Murashkin, R. Z.Valiev,Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Materials Science and Engineering A, 560(10), 1(2013) | 2 | R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov,Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103(2000) | 3 | M. P. Liu, H. J. Roven,High density hexagonal and rhombic shaped nanostructures in an fcc aluminum alloy induced by severe plastic deformation at room temperature, Applied Physics Letters, 90(8), 3115(2007) | 4 | H. J. Roven, M. P. Liu, J. C. Werenskiold,Dynamic precipitation during severe plastic deformation of Al-Mg-Si aluminium alloy, Materials Science and Engineering A, 483, 54(2008) | 5 | P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valoev, S. P. Ringer,Nanostructural hierarchy increases the strength of aluminium alloys, Nature Communications, 1, 63(2010) | 6 | L. J. Hu, S. J. Zhao,The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes, Journal of Materials Science, 47(19), 6872(2012) | 7 | X. Y. Liu, J. B. Adams,Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures, Acta Materialia, 46(10), 3467(1998) | 8 | X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, R. W. Hyland Jr,Anisotropic surface segregation in Al–Mg alloys, Surface Science, 373(2), 357(1997) | 9 | J. W. Zhang, M. J. Starink, N. Gao, W. L. Zhou, Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion, Materials Science and Engineering A, 528(4-5), 2093(2011) | 10 | K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch,Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Materialia, 54(2), 251(2006) | 11 | F. Hou, X. Z. Liao, Y. T. Zhu, S. Dallek, E. J. Lavernia,Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia, 51(10), 2777(2003) | 12 | LU Ke,LIU Xuedong, HU Zhuangqi, Hall-Petch relation in nanocrystalline materials, Chinese Journal of Materials Research, 8(5), 385(1994) | 12 | (卢 柯, 刘学东, 胡壮麒, 纳米晶体材料的Hall-Petch关系, 材料研究学报, 8(5), 385(1994)) | 13 | WEI Yingjuan,YUAN Shouqian, ZHANG Bing, ZHANG Xifeng, Ultrafine grain Al and Al alloys processed by SPD, Light Alloy Fabrication Technology, 36(4), 49(2008) | 13 | (魏颖娟, 袁守谦, 张 兵, 张西锋, 大塑性变形制备超细晶粒铝及铝合金材料. 轻合金加工技术, 36(4), 49(2008)) | 14 | G. Sakai, Z. Horita, T. G. Langdon,Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A, 393(1), 344(2005) | 15 | Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G.Langdon,An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, Journal of Materials Research, 11(8), 1880(1996) | 16 | A. P. Zhilyaev, T. G. Langdon,Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53(6), 893(2008) | 17 | M. P. Liu, H. J. Roven, M. Y. Murashkin, R. Z. Valiev, A. Kilmametov, Z. Zhang, Y. D. Yu,Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, Journal of Materials Science, 48(13), 4681(2013) | 18 | J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe,Microstructures and dislocation configurations in nanostructured Cu processed by RCS, Acta Materialia, 49(9), 1497(2001) | 19 | R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi,Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering A, 396(1-2), 341(2005) | 20 | R. S. Musalimov, R. Z. Valiev,Dilatometric analysis of aluminium alloy with submicrometre grained structure, Scripta Metallurgica et Materialia, 27(12), 1685(1992) | 21 | R. Z. Valiev, V. Y. Gertsman, O. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi, 97(1), 11(1986) | 22 | J. Y. Huang, X. Z. Liao, Y. T. Zhu, F. Zhou, E. J. Lavernia,Grain boundary structure of nanocrystalline Cu processed by cryomilling, Philosophical Magazine, 83(12), 1407(2003) | 23 | E. Ma, T. D. Shen, X. L. Wu,Nanostructured metals: Less is more, Nature Materials, 5(7), 515(2006) | 24 | X. L.Wu, E. MaY. T. Zhu,Deformation defects in nanocrystalline nickel, Journal of Materials Science, 42(5), 1427(2007) | 25 | M. Murayama, J. M. Howe, H. Hidaka, S. Takaki,Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science, 295(5564), 2433(2002) | 26 | X. Z. Liao, J. Y. Huang, Y. T. Zhu, F. Zhou, E. J. Lavernia,Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy, Philosophical Magazine, 83(26), 3065(2003) | 27 | HU Gengxiang, CAI Xun, Fundamentals of Material Science(Shanghai, Shanghai Traffic Press, 2000)p.111 | 27 | (胡赓祥, 蔡 珣, 材料科学基础, 第一版 (上海, 上海交通大学出版社, 2000)p.111) | 28 | R. Z. Valiev, V. Y. GertsmanO. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi(a), 97(1), 11(1986) | 29 | Y. H. Zhao, J. F. Bingert, Y. T. Zhu, X. Z. Liao, R. Z. Valiev, Z. Horita, T. G. Langdon, Y. Z. Zhou, E. J. Lavernia,Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density, Applied Physics Letters, 92(8), 3(2008) | 30 | V. Randle,Twinning-related grain boundary engineering, Acta Materialia, 52(14), 4067(2004) | 31 | T. L. Daulton, T. J. Bernatowicz, R. S. Lewis, S. Messenger, F. J.Stadermann, S. Amari,Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy, Geochimica et Cosmochimica Acta, 67(24), 4743(2003) | 32 | K. Ikeda, N. Takata, K. Yamada, F. Yoshida, H. Nakashima, N. Tsuji,Grain boundary structure in ARB processed copper, Materials Science Forum, 503, 925(2006) | 33 | R. Z. Valiev,Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials, 3(8), 511(2004) | 34 | M. Richert, H. P. Stuwe, M. J. Zehetbauer, J. Richert, R. Pippan, C.Motz, E. Schafler, Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering A, 355(1-2), 180(2003) | 35 | R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe,Paradox of strength and ductility in metals processed bysevere plastic deformation, Journal of Materials Research, 17(1), 5(2002) | 36 | Y. T. Zhu, X. Z. Liao,Nanostructured metals: Retaining ductility, Nature Materials, 3(6), 351(2004) | 37 | R. Z. Valiev, N. A. Enikeev, T. G. Langdon,Towards superstrength of nanostructured metals and alloys, produced by SPD, Kovove Mater, 49, 1(2011) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|