Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 371-379    DOI: 10.11901/1005.3093.2013.724
  本期目录 | 过刊浏览 |
高压扭转大塑性变形Al–Mg合金中的晶界结构*
蒋婷慧1,刘满平1(),谢学锋1,王俊1,吴振杰1,刘强1,Hans J. Roven2
1. 江苏大学材料科学与工程学院 江苏省高端结构材料重点实验室 镇江 212013
2. 挪威科技大学(NTNU)材料科学与工程学院 特隆赫姆7491 挪威
Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion
Tinghui JIANG1,Manping LIU1,**(),Xuefeng XIE1,Jun WANG1,Zhenjie WU1,Qiang LIU1,J. Roven Hans2
1. School of Materials Science and Engineering, Jiangsu Province Key Laboratory of High-end Structural Materials, Jiangsu University, Zhenjiang 212013
2. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
引用本文:

蒋婷慧,刘满平,谢学锋,王俊,吴振杰,刘强,Hans J. Roven. 高压扭转大塑性变形Al–Mg合金中的晶界结构*[J]. 材料研究学报, 2014, 28(5): 371-379.
Tinghui JIANG, Manping LIU, Xuefeng XIE, Jun WANG, Zhenjie WU, Qiang LIU, J. Roven Hans. Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion[J]. Chinese Journal of Materials Research, 2014, 28(5): 371-379.

全文: PDF(7829 KB)   HTML
摘要: 

利用透射电镜和高分辨透射电镜(HRTEM)研究了高压扭转大塑性变形纳米结构Al–Mg合金中的位错和晶界结构。结果表明: 对尺寸小于100 nm的晶粒, 晶内无位错, 其晶界清晰平直; 而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成, 局部位错密度可高达1017 m-2, 这些位错往往以位错偶和位错环的形式出现。用HRTEM观察到了小角度及大角度非平衡晶界、小角度平衡晶界和大角度Σ9平衡晶界等不同的晶界结构。基于实验结果, 分析了局部高密度位错、位错胞和非平衡晶界等在晶粒细化过程中的作用, 提出了高压扭转Al–Mg合金的晶粒细化机制。

关键词 金属材料高压扭转大塑性变形铝合金晶界结构非平衡晶界位错    
Abstract

The structure of dislocation and grain boundary (GB) in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) was characterized by means of transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp GBs and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. These dislocations appear as dipoles and loops. Different GB structures including low/high angle non-equilibrium GBs, low angle equilibrium GBs and high angle Σ 9 equilibrium boundaries are characterized by HRTEM. The roles of the very high local dislocation density, the dislocation cells and the non-equilibrium GBs in grain refinement during HPT are analyzed and the refinement mechanisms associated with these structural features have been proposed.

Key wordsmetal materials    high pressure torsion    severe plastic deformation    aluminium alloys    grain boundary structure    non-equilibrium grain boundary    dislocation
收稿日期: 2013-09-30     
基金资助:* 国家自然科学基金50971087,江苏省自然科学基金BK2012715, 江苏大学高级人才启动基金11JDG070 & 11JDG140, 江苏省高端结构材料重点实验室资金hsm1301 和江苏省材料摩擦学重点实验室基金Kjsmcx2011004 资助项目。
图1  高压扭转Al–Mg合金中典型晶粒的TEM像
图2  高压扭转Al–0.5Mg合金300 nm较大晶粒中位错的HRTEM像
图3  高压扭转Al–Mg合金中20 nm小晶粒的HRTEM图像
图4  高压扭转Al–Mg合金中小角度平衡晶界的HRTEM图像
图5  高压扭转Al–Mg合金中小角度非平衡晶界的HRTEM图像
图6  高压扭转Al–Mg合金中大角度非平衡晶界的HRTEM图像
图7  高压扭转Al–Mg合金中Σ9大角度晶界的HRTEM图像
1 I. Sabirov, M. Y.Murashkin, R. Z.Valiev,Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Materials Science and Engineering A, 560(10), 1(2013)
2 R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov,Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45(2), 103(2000)
3 M. P. Liu, H. J. Roven,High density hexagonal and rhombic shaped nanostructures in an fcc aluminum alloy induced by severe plastic deformation at room temperature, Applied Physics Letters, 90(8), 3115(2007)
4 H. J. Roven, M. P. Liu, J. C. Werenskiold,Dynamic precipitation during severe plastic deformation of Al-Mg-Si aluminium alloy, Materials Science and Engineering A, 483, 54(2008)
5 P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. T. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valoev, S. P. Ringer,Nanostructural hierarchy increases the strength of aluminium alloys, Nature Communications, 1, 63(2010)
6 L. J. Hu, S. J. Zhao,The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes, Journal of Materials Science, 47(19), 6872(2012)
7 X. Y. Liu, J. B. Adams,Grain-boundary segregation in Al–10% Mg alloys at hot working temperatures, Acta Materialia, 46(10), 3467(1998)
8 X. Y. Liu, P. P. Ohotnicky, J. B. Adams, C. L. Rohrer, R. W. Hyland Jr,Anisotropic surface segregation in Al–Mg alloys, Surface Science, 373(2), 357(1997)
9 J. W. Zhang, M. J. Starink, N. Gao, W. L. Zhou, Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion, Materials Science and Engineering A, 528(4-5), 2093(2011)
10 K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch,Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Materialia, 54(2), 251(2006)
11 F. Hou, X. Z. Liao, Y. T. Zhu, S. Dallek, E. J. Lavernia,Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia, 51(10), 2777(2003)
12 LU Ke,LIU Xuedong, HU Zhuangqi, Hall-Petch relation in nanocrystalline materials, Chinese Journal of Materials Research, 8(5), 385(1994)
12 (卢 柯, 刘学东, 胡壮麒, 纳米晶体材料的Hall-Petch关系, 材料研究学报, 8(5), 385(1994))
13 WEI Yingjuan,YUAN Shouqian, ZHANG Bing, ZHANG Xifeng, Ultrafine grain Al and Al alloys processed by SPD, Light Alloy Fabrication Technology, 36(4), 49(2008)
13 (魏颖娟, 袁守谦, 张 兵, 张西锋, 大塑性变形制备超细晶粒铝及铝合金材料. 轻合金加工技术, 36(4), 49(2008))
14 G. Sakai, Z. Horita, T. G. Langdon,Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A, 393(1), 344(2005)
15 Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G.Langdon,An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy, Journal of Materials Research, 11(8), 1880(1996)
16 A. P. Zhilyaev, T. G. Langdon,Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53(6), 893(2008)
17 M. P. Liu, H. J. Roven, M. Y. Murashkin, R. Z. Valiev, A. Kilmametov, Z. Zhang, Y. D. Yu,Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation, Journal of Materials Science, 48(13), 4681(2013)
18 J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe,Microstructures and dislocation configurations in nanostructured Cu processed by RCS, Acta Materialia, 49(9), 1497(2001)
19 R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi,Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Materials Science and Engineering A, 396(1-2), 341(2005)
20 R. S. Musalimov, R. Z. Valiev,Dilatometric analysis of aluminium alloy with submicrometre grained structure, Scripta Metallurgica et Materialia, 27(12), 1685(1992)
21 R. Z. Valiev, V. Y. Gertsman, O. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi, 97(1), 11(1986)
22 J. Y. Huang, X. Z. Liao, Y. T. Zhu, F. Zhou, E. J. Lavernia,Grain boundary structure of nanocrystalline Cu processed by cryomilling, Philosophical Magazine, 83(12), 1407(2003)
23 E. Ma, T. D. Shen, X. L. Wu,Nanostructured metals: Less is more, Nature Materials, 5(7), 515(2006)
24 X. L.Wu, E. MaY. T. Zhu,Deformation defects in nanocrystalline nickel, Journal of Materials Science, 42(5), 1427(2007)
25 M. Murayama, J. M. Howe, H. Hidaka, S. Takaki,Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science, 295(5564), 2433(2002)
26 X. Z. Liao, J. Y. Huang, Y. T. Zhu, F. Zhou, E. J. Lavernia,Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy, Philosophical Magazine, 83(26), 3065(2003)
27 HU Gengxiang, CAI Xun, Fundamentals of Material Science(Shanghai, Shanghai Traffic Press, 2000)p.111
27 (胡赓祥, 蔡 珣, 材料科学基础, 第一版 (上海, 上海交通大学出版社, 2000)p.111)
28 R. Z. Valiev, V. Y. GertsmanO. A. Kaibyshev,Grain boundary structure and properties under external influences, Physica Status Solidi(a), 97(1), 11(1986)
29 Y. H. Zhao, J. F. Bingert, Y. T. Zhu, X. Z. Liao, R. Z. Valiev, Z. Horita, T. G. Langdon, Y. Z. Zhou, E. J. Lavernia,Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density, Applied Physics Letters, 92(8), 3(2008)
30 V. Randle,Twinning-related grain boundary engineering, Acta Materialia, 52(14), 4067(2004)
31 T. L. Daulton, T. J. Bernatowicz, R. S. Lewis, S. Messenger, F. J.Stadermann, S. Amari,Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy, Geochimica et Cosmochimica Acta, 67(24), 4743(2003)
32 K. Ikeda, N. Takata, K. Yamada, F. Yoshida, H. Nakashima, N. Tsuji,Grain boundary structure in ARB processed copper, Materials Science Forum, 503, 925(2006)
33 R. Z. Valiev,Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials, 3(8), 511(2004)
34 M. Richert, H. P. Stuwe, M. J. Zehetbauer, J. Richert, R. Pippan, C.Motz, E. Schafler, Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering A, 355(1-2), 180(2003)
35 R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe,Paradox of strength and ductility in metals processed bysevere plastic deformation, Journal of Materials Research, 17(1), 5(2002)
36 Y. T. Zhu, X. Z. Liao,Nanostructured metals: Retaining ductility, Nature Materials, 3(6), 351(2004)
37 R. Z. Valiev, N. A. Enikeev, T. G. Langdon,Towards superstrength of nanostructured metals and alloys, produced by SPD, Kovove Mater, 49, 1(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.