Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 321-324    DOI: 10.11901/1005.3093.2013.880
  本期目录 | 过刊浏览 |
超高压熔渗法制备铜/金刚石复合材料的热导率*
何金珊,张海龙,张洋,李建伟,王西涛()
北京科技大学新金属材料国家重点实验室 北京 100083
Thermal Conductivity of Cu/Diamond Composites Produced by High Pressure Liquid Infiltration Method
Jinshan HE,Hailong ZHANG,Yang ZHANG,Jianwei LI,Xitao WANG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

何金珊,张海龙,张洋,李建伟,王西涛. 超高压熔渗法制备铜/金刚石复合材料的热导率*[J]. 材料研究学报, 2014, 28(5): 321-324.
Jinshan HE, Hailong ZHANG, Yang ZHANG, Jianwei LI, Xitao WANG. Thermal Conductivity of Cu/Diamond Composites Produced by High Pressure Liquid Infiltration Method[J]. Chinese Journal of Materials Research, 2014, 28(5): 321-324.

全文: PDF(2388 KB)   HTML
摘要: 

用超高压熔渗法制备了金刚石体积分数为90%的铜/金刚石复合材料, 其热导率为662 Wm-1K-1, 比用其它方法制备的这种材料的热导率高。SEM、EDS和XRD的表征结果表明, 这种铜/金刚石复合材料的界面结合良好, 金刚石与铜之间有过渡层, 部分金刚石相互连通。

关键词 复合材料热导率超高压熔渗法铜/金刚石    
Abstract

The Cu/diamond composites containing 90% (volume fraction) diamond particles were prepared at 1200°C under a pressure of 5 GPa by high pressure liquid infiltration method, giving a measured thermal conductivity of 662 Wm-1K-1. The characterization of composites by means of SEM, EDS and XRD shows that the interfacial bonding of Cu/diamond is strong, and a transition layer exists between diamond and Cu. Besides, some diamond particles are found to be inter-connected. The Cu/diamond composites fabricated by this method exhibited a thermal conductivity far superior to those produced by other means.

Key wordscomposites    thermal conductivity    high pressure liquid infiltration    Cu/diamond
收稿日期: 2013-11-20     
基金资助:* 国家自然科学基金51271017和中央高校基本科研业务费FRF-TP-13-033A资助项目。
图1  铜/金刚石复合材料的制备工艺曲线
图2  铜/金刚石复合材料的XRD图谱
图3  铜/金刚石复合材料的表面微观结构
图4  铜/金刚石复合材料的断口SEM像
图5  铜/金刚石复合材料的界面线扫描结果
图6  不同方法制备的铜/金刚石复合材料热导率比较
1 N. Q. Vo, S. W. Chee, D. Schwen, X. Zhang, P. Bellon, R. S. Averback,Microstructural stability of nanostructured Cu alloys during high-temperature irradiation, Scripta Materialia, 63, 929(2010)
2 K. Yoshida, H. Morigami,Thermal properties of diamond/copper composite material, Microelectronics Reliability, 44, 303(2004)
3 K. Chu, C. C. Jia, H. Guo, W. S. Li,On the thermal conductivity of Cu-Zr/diamond composites, Material and Design, 45, 36(2013)
4 X. Y. Shen, X. B. He, S. B. Ren, H. M. Zhang, X. H. Qu,Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites, Journal of Alloys and Compounds, 529, 134(2012)
5 ZHANG Yujun,TONG Zhensong, SHEN Zhuoshen, The copper/diamond composites fabricated by SPS method, Journal of University of Science and Technology Beijing, 31(8), 1019(2009)
5 (张毓隽, 童震松, 沈卓身, SPS方法制备铜/金刚石复合材料, 北京科技大学学报, 31(8), 1019(2009))
6 D. P. H. Hasselman, L. F. Johnson,Effective thermal conductivity of composites with interfacial thermal barrier resistance, Journal of Composite Materials, 21, 508(1987)
7 E. T. Swartz, R. O. Pohl,Thermal boundary resistance, Review of Modern Physics, 61, 605(1989)
8 J. S. He, H. L. Zhang, Y. Zhang, Y. M. Zhao, X. T. Wang, Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method, Physica Status Solidi A, DOI: 10.1002/pssa.201330237.
9 T. Clyne, P. Withers, An Introduction to Metal Matrix Composites, 1st edition, (Cambridge, Cambridge University Press, 1993)
10 K. Chu, C. C. Jia, H. Guo, W. S. Li,Microstructure and thermal conductivity of Cu-B/diamond composites, Journal of Composite Materials, 47, 2945(2013)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.