Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (3): 191-196    DOI: 10.11901/1005.3093.2013.790
  本期目录 | 过刊浏览 |
碳化钨/钢基复合材料的界面重熔*
黄浩科,李祖来(),山泉,蒋业华,侯占东
昆明理工大学材料科学与工程学院 昆明 600093
Interface Remelting of Tungsten Carbide Particles Reinforced Steel Composite
Haoke HUANG,Zulai LI(),Quan SHAN,Yehua JIANG,Zhandong HOU
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
引用本文:

黄浩科,李祖来,山泉,蒋业华,侯占东. 碳化钨/钢基复合材料的界面重熔*[J]. 材料研究学报, 2014, 28(3): 191-196.
Haoke HUANG, Zulai LI, Quan SHAN, Yehua JIANG, Zhandong HOU. Interface Remelting of Tungsten Carbide Particles Reinforced Steel Composite[J]. Chinese Journal of Materials Research, 2014, 28(3): 191-196.

全文: PDF(2681 KB)   HTML
摘要: 

用等离子快速烧结(SPS)法烧结制备碳化钨/钢基复合材料, 然后用真空管式炉对其进行界面重熔, 研究了重熔温度对界面反应的影响以及界面反应区的生成机制。结果表明, 界面反应可在固态条件下发生, 且随着重熔温度的提高界面反应区的宽度呈增大的趋势。界面反应的产物为Fe3W3C, 其形成过程为: 在约1314℃碳化钨颗粒内部发生反应2WC→W2C+C, 然后在约1341℃发生W2C与基体的反应生成Fe3W3C。

关键词 复合材料界面反应SPSFe3W3C重熔    
Abstract

A tungsten carbide particles reinforced steel matrix composite was fabricated by spark plasma sintering (SPS) technique, and then the composite was remelted in a vacuum tube furnace. The effect of remelting temperature on interface reaction was investigated meticulously. The results show that the interface reaction could occur when the matrix was still in solid state, the thickness of interface reaction layer increased with the increasing temperature. The interface reaction product, Fe3W3C, was resulted from the following two step reactions: firstly the reaction 2WC→W2C+C would occur within tungsten carbide particles at 1314℃, then the W2C would react with Fe to produce Fe3W3C at temperatures above 1341℃.

Key wordscomposites    interface reaction    SPS    Fe3W3C    remelting
收稿日期: 2013-10-20     
基金资助:* 国家自然科学基金51241002 和51361019 资助项目。
作者简介:

本文联系人: 李祖来

Materials Mass fraction/%
C W Cu SO4 N Bal.
Iron powder - - 0.005 0.015 0.005 Fe
Tungsten carbide 3.7-4.0 95.96 - - - Residue
表1  粉末的化学成分
Maximum temperature / ℃ Heating Rate / ℃/min Pressure / kN Holding time / min
1000 100 9.4 5
表2  SPS烧结参数
图1  管式炉温度变化曲线
图2  重熔温度不同的试样和未重熔试样的XRD
图3  重熔和未重熔试样的光学金相照片
图4  重熔温度不同的试样和未重熔试样的电镜照片
Area Element/mass%
Fe W C
1 in Fig.4a - 97.81 2.19
2 in Fig.4a 94.20 5.77 0.03
1 in Fig.4b - 99.85 0.15
2 in Fig.4b 23.00 76.92 0.08
3 in Fig.4b 90.14 9.86 -
4 in Fig.4c - 99.85 0.15
5 in Fig.4c 21.11 78.82 0.07
6 in Fig.4c 91.48 8.52 -
表3  复合材料中各处的EDS能谱分析(质量分数, %)
图5  铸渗法制备复合材料试样的XRD
图6  铸渗法制备的复合材料试样的电镜照片
Area Element/mass%
Fe W C
1 in Fig.6 - 98.27 1.73
2 in Fig.6 21.09 77.78 1.13
3 in Fig.6 84.87 14.08 1.05
表4  复合材料中各处的EDS能谱分析(质量分数, %)
图7  Fe粉、碳化钨颗粒及其混合粉末的DSC曲线
图8  碳化钨颗粒可能发生反应的ΔG随温度的变化
1 ZHAO Minhai,LIU Aiguo, GUO Mianhuan, Research on WC reinforced metal matrix composite, Welding & Joining, (11), 26(2006)
1 (赵敏海, 刘爱国, 郭面焕, WC颗粒增强耐磨材料的研究现状, 焊接, (11), 26(2006))
2 TIAN Zhiyu,Research and application of particle reinforced metal matrix composite material, Metal Materials And Metallurgy Engineering, 136(1), 3(2008)
2 (田治宇, 颗粒增强金属基复合材料的研究及应用, 金属材料与冶金工程, 36(1), 3(2008))
3 Izabel Fernanda Machado,Luca Girardini, Ivan Lonardelli, Alberto Molinari, The study of ternary carbides formation during SPS consolidation process in the WC–Co–steel system, Int. Journal of Refractory Metals & Hard Materials, 27, 883(2009)
4 Tokita M. Development of square-shaped large size WC/Co/Ni system FGM fabricated by spark plasma sintering (SPS)-method its industrial applications, Mater Sci Forum, 711(8), 492(2005)
5 Zhuhui Qiao, Xianfeng Ma, Wei Zhao, Huaguo Tang, Microstructure, thermal stability and mechanical properties of the novel (W1xAlx)C–Co (x = 0.2, 0.33, 0.4, 0.5) cemented carbide. Int J Refract Met Hard Mater, 27, 48(2009)
6 D Lou,J Hellman, D Luhulima, J Liimatainen, V. K Lindroos. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites, Mater Science Engineering, A340, 155(2003)
7 Fan Tongxiang, Shi Zhongliang, Zhang Di, The interfacial reaction characteristic in SiC/Al composite above liquidus during remelting. Materials Science and Engineering A, 2557, 281(1998)
8 OUYANG Liuzhang,LUO Chengping, LUO Zhuoxuan, SUI Xiandong, Study on Interface Characteristics of SiCp/ZL109 Aluminium Alloy Composites, Foundry, 3, 9(1999)
8 (欧阳柳章, 罗承萍, 骆灼旋, 隋贤栋, SiCp/ZL109复合材料界面研究, 铸造, 3, 9(1999))
9 LIU Zheng,LIU Xiaomei, Effects of interface on wear resistance of fiber reinforced aluminum-silicon alloy composites, Mining and Metallurgical Engineering, 23(3), 65(2003)
9 (刘 政, 刘小梅, 界面对纤维增强铝硅合金复合材料耐磨性的影响, 矿业工程, 23(3), 65(2003))
10 LIU Zheng,ZHOU Bide, PENG Delin, AN Geying, A study of the interface of short alumina fiber reinforced aluminium alloy composites, Acta Materiae Compositae Sinica, 8(4), 1(1991)
10 (刘 政, 周彼德, 彭德林, 安阁英, 氧化铝短纤维增强铝合金复合材料界面的研究, 复合材料学报, 8(4), 1(1991))
11 LIU Junyou,LIU Yingcai, LIU Guoquan, YIN Yansheng, SHI Zhongliang, Oxidation behavior of silicon carbide particales and their interfacial characterization in aluminum matrix composites, The Chinese Journal of Nonferrous Metals, 12(5), 961(2002)
11 (刘俊友, 刘英才, 刘国权, 尹衍升, 施忠良, SiC颗粒氧化行为及SiCp/铝基复合材料界面特征, 中国有色金属学报, 12(5), 961(2002))
12 LIU Junyou,SHI Zhongliang2, LIU Guoquan, GU Mingyuan, Lee Jae chul, Interfacial characteristics of aluminum matrix composites with oxidized SiCp articles as reinforcement, Journal of Chinese Electron Microscopy Society, 20(3), 206(2001)
12 (刘俊友, 施忠良, 刘国权, 顾明元, Lee Jae chul. 氧化的碳化硅颗粒增强铝-镁基复合材料的界面微结构特征. 电子显微学报, 20(3), 206(2001))
13 Arsenauil R.J,Shi N, Dislocation generation due to difference between the coefficient of thermal expansion, Materials Science and Engineering, 81, 175(1986)
14 Arsenauil R. J,Wang L, Strengthening of composites due to microstructural changes in the matrix, Acta Metall Mater, 39(1), 47(1991)
15 WEI Yonghui,SONG Yanpei, Wear resistance of in-situ synthesized Fe matrix composites, Special Casting & Nonferrous Alloys, 27(3), 229(2007)
15 (魏永辉, 宋延沛, 原位自生钢基复合材料耐磨性能的研究. 特种铸造及有色合金, 27(3), 229(2007))
16 ZENG Shaolian,LI Wei, WC Particle reinforced steel/iron matrix wear resistant composites, Special Casting & Nonferrous Alloys, 27(6), 441(2007)
16 (曾绍连, 李 卫, 碳化钨增强钢铁基耐磨复合材料的研究和应用. 特种铸造及有色合金, 27(6), 441(2007))
17 SONG Yanpei,LI Bingzhe, WANG Wenzhang, XIE Jingpei, ZHU Jingzhi, Investigation of WCp/Fe composite roller ring, Chinese Journal of Mechanical Engineering, 37(1), 99(2001)
17 (宋延沛, 李秉哲, 王文众, 谢敬佩, 朱景芝, WC颗粒增强铁基复合材料辊环的研究, 机械工程学报, 37(1), 99(2001))
18 LIANG Yingjiao, CHE Yinchang, Handbook of Thermodynamic Data for Inorganic Material, ShenYang, Northeastern University Press, 1993
18 (梁英教,车荫昌,无机物热力学数据手册, 沈阳, 东北大学出版社, 1993)
19 D. V. Suetin, I. R. Shein, A. L. Ivanovskii,Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physica B, 404, 3544(2009)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.