Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (12): 919-924    DOI: 10.11901/1005.3093.2014.260
  本期目录 | 过刊浏览 |
热轧态LT24铝合金溶质原子的偏聚规律*
李慧1,3(),汪波1,4sup1,夏爽2,周邦新2,苏诚3,丁文炎3,谌炎松3
1. 上海大学微结构重点实验室 上海 200444
2. 上海大学材料研究所 上海 200072
3. 浙江久立特材科技股份有限公司 湖州 313000
4. 贵阳职业技术学院 贵阳 550081
Segregation of Solute Atoms in Hot Rolled Aluminum Alloy LT24
Hui LI1,3,**(),Bo WANG1,4,Wenqing LIU1,Shuang XIA2,Bangxin ZHOU2,Cheng SU3,Wenyan DING3,Yansong CHEN3
1. Key Laboratory for Microstructures, Shanghai University, Shanghai 200444
2. Institute of Materials, Shanghai University, Shanghai 200072
3. Zhejiang Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313000
4. Guiyang Vocational and Technical College, Guiyang 550081
引用本文:

李慧,汪波,夏爽,周邦新,苏诚,丁文炎,谌炎松. 热轧态LT24铝合金溶质原子的偏聚规律*[J]. 材料研究学报, 2014, 28(12): 919-924.
Hui LI, Bo WANG, Wenqing LIU, Shuang XIA, Bangxin ZHOU, Cheng SU, Wenyan DING, Yansong CHEN. Segregation of Solute Atoms in Hot Rolled Aluminum Alloy LT24[J]. Chinese Journal of Materials Research, 2014, 28(12): 919-924.

全文: PDF(3467 KB)   HTML
摘要: 

采用原子探针层析技术(APT)等测试手段分析了LT24铝合金热轧后合金元素的偏聚规律。结果表明: 热轧态铝合金晶粒内部有成分为Al0.5Mg(Si0.7Cu0.3)的析出相, 析出相与基体之间的界面处没有元素偏聚。溶质原子Mg、Si、Cu在晶界处偏聚, 在晶界处的偏聚规律与晶粒内部的相反, Cu的偏聚倾向远大于Si和Mg, 晶界处Cu的含量达到基体Cu含量的45倍左右。基于实验结果, 讨论了合金元素偏聚的规律及其对材料性能的影响。

关键词 金属材料铝合金偏聚析出晶界原子探针层析技术    
Abstract

The segregation of solute atoms in hot rolled LT24 aluminum alloy was investigated by atom probe tomography. The results show that a precipitate with composition of Al0.5Mg(Si0.7Cu0.3) can be observed in the grains. No solute segregation can be observed at the interface between precipitates and the matrix. However solute atoms, such as Mg, Si and Cu all tend to segregate at grain boundaries, but the segregation tendency of Cu is much stronger than that of Mg and Si. The concentration of Cu at grain boundaries is 45 times of that at the matrix. Based on the experimental results, the feature of solute segregation and its effect on the performance of the alloy are discussed.

Key wordsmetallic materials    aluminum alloy    segregation    precipitates    grain boundary    atom probe tomography
收稿日期: 2014-05-20     
基金资助:* 国家自然科学基金51301103, 中国博士后科学基金2013M541507, 上海市科学技术委员会重点项目12JC1404000和上海大学创新基金资助项目。
图1  实验用样品的金相照片
图2  样品晶粒内部Mg、Si、Cu原子的三维空间分布图
图3  垂直穿越析出相附近的一维成分分布曲线
图4  平行于和垂直于晶界面观察样品中晶界处Mg、Si、Cu的三维空间分布图
图5  垂直穿越晶界附近Mg、Si、Cu的一维成分分布曲线(虚线位置为晶界位置)和积累成分曲线
Cu Si Mg
Sav 44.91 3.67 1.40
Γ 3.819 0.352 0.301
表1  不同溶质原子在晶界处的富集指数(Sav)和Gibbs界面超量Γ(×1018/m2)
1 B. C. Shang, Z. M. Yin, G. Wang, B. Liu, Z. Q. Huang,Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Materials and Design, 32, 3818(2011)
2 C. D. Marioara, S. J. Andersen, J. Jansen, H. W. Zandbergen,The influence of temperature and storage time at RT on nucleation of the β"phase in 6082 Al-Mg-Si alloy, Acta Materialia, 51, 789(2003)
3 M. Jin, J. Li, G. J. Shao,The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy, Journal of Alloys and Compounds, 437, 146(2007)
4 WANG Hui,SUN Yuanzhen, ZHANG Weiguo, BI Antai, KANG Yalun, LI Wei, Atomic Energy Science and Technology, 33, 134(1999)
4 (王 辉, 孙源珍, 张伟国, 毕安泰, 康亚伦, 李 伟, 中国先进研究堆燃料元件包壳候选材料中温动水腐蚀, 原子能科学与技术, 33, 134(1999))
5 YANG Wenchao,WANG Mingpu, SHENG Xiaofei, ZHANG Qian, WANG Zhengan, Study of the aging precipitation and hardening behavior of 6005A alloy sheet for rail traffic vehicle, Acta Metellurgica Sinica, 46, 1481(2010)
5 (杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安, 轨道交通车辆用6005A合金板材时效析出及硬化行为研究, 金属学报, 46, 1481(2010))
6 R. S. Yassar, D. P. Field, H. Weiland,The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy: AA6022, Scripta Materialia, 53, 299(2005)
7 G. A. Edwards, K. Stiller, G. L. Dunlop, M. J. Couper,The precipitation sequence in Al-Mg-Si alloys, Acta Metallurgica, 46, 3893(1998)
8 M. J. Starink, L. F. Cao, P. A. Rometsch. A model for the thermodynamics ofstrengthening due to co-clusters in Al–Mg–Si-based alloys, Acta Materialia, 60, 4194(2012)
9 M. Murayama, K. Hono, W. F. Miao, D. E. Laughlin,The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metallurgical and Materials Transactions, 32A, 239(2001)
10 LIU Yani,CHEN Jianghua, YIN Meijie, LIU Chunhui, WU Cuilan, ZHAO Xinqi, The influences of natural ageing and Cu addition on the age hardening behavior of AlMgSi(Cu) alloys, Journal of Chinese Electron Microscopy Society, 29(3), 280(2010)
10 (刘亚妮, 陈江华, 尹美杰, 刘春辉, 伍翠兰, 赵新奇, 自然时效和Cu含量对AlMgSi(Cu)合金时效硬化行为的影响, 电子显微学报, 29(3), 280(2010))
11 L. B. Ber,Accelerated artificial ageing regimes of commercial aluminum alloys. II: Al-Cu, Al-Zn-Mg-(Cu), Al-Mg-Si-(Cu) alloys, Materials Science and Engineering, A280, 91(2000)
12 J. Kim, C. D. Marioara, R. Holmestad, E. Kobayshi, T. Sato,Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Materials Science and Engineering, A560, 154(2013)
13 K. El-Menshawy, A. A. El-sayed, M. E. El-bedawy, H. A. Ahmed, S. M. El-raghy,Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061, Corrosion Science, 54, 167(2012)
14 G. Svenningsen, M. H. Larsen, J. H. Nordlien, K. Nisancioglu,Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corrosion Science, 48, 3969(2006)
15 G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu,Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corrosion Science, 48, 1528(2006)
16 W. J. Liang, P. A. Rometsch, L. F. Cao, N. Birbilis,General aspects related to the corrosion of 6xxx series aluminum alloys: Exploring the influence of Mg/Si ratio and Cu, Corrosion Science, 76, 119(2013)
17 M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, 1st ed.(Kluwer Academic/Pienum Publishers, New York, 1999)p. 33
18 LI Hui,XIA Shuang, ZHOU Bangxin, LIU Wenqing, Preliminary results of grain boundary segregation in Alloy 690 by atom probe tomography, Journal of Chinese Electron Microscopy Society, 30(3), 206(2011)
18 (李 慧, 夏 爽, 周邦新, 刘文庆, 原子探针层析方法研究690合金晶界偏聚的初步结果, 电子显微学报, 30(3), 206(2013))
19 H. S. Hasting, J. C. Walmsley, A. T. Van Helvoort, C. D. Marioara, S. J. Andersen, R. Holmestad,Z-contrast imaging of the arrangement of Cu in precipitates in 6XXX-series aluminum alloys, Philosophical Magazine Letters, 86, 589(2006)
20 D. J. Chakrabarti, D. E. Laughlin,Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Progress in Materials Science, 49, 389(2004)
21 WANG Bo,WANG Xiaojiao, SONG Hui, YAN Jujie, QIU Tao, LIU Wenqing, LI Hui, Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy, Acta Metallurgica Sinica, 50, 685(2014)
21 (汪 波, 王晓姣, 宋 辉, 严菊杰, 邱 涛, 刘文庆, 李 慧, Al-Mg-Si合金时效早期显微组织演变及其对强化的影响, 金属学报, 50, 685(2014))
22 K. Matsuda, D. Teguri, Y. Uetani, T. Sato, S. Ikeno,Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu alloy, Scripta Materialia, 47, 833(2002)
23 H. Li, S. Xia, B. X. Zhou, W. Q. Liu,C–Cr segregation at grain boundary before the carbide nucleation in Alloy 690, Materials Characterization, 66, 68(2012)
24 H. Li, S. Xia, W. Q. Liu, T. G. Liu, B. X. Zhou,Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe alloys, Journal of Nuclear Materials, 439, 57(2013)
25 D. Lemarchand, E. Cadel, S. Chambreland, D. Blavette,Investigation of grain-boundary structure–segregation relationship in an N18 nickel-based superalloy, Philosophical Magazine, 82A, 1651(2002)
26 D. Blavette, P. Duval, L. Letellier, M. Guttmann,Atomic-scale APFIM and TEM investigation of grain boundary microchemstry in Astroloy nickel base superalloys, Acta Materialia, 44, 4995(1996)
27 B. W. Krakauer, D. N. Seidman,Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces, Physics Review, 48B, 6724(1993)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.