Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 721-729    DOI: 10.11901/1005.3093.2014.272
  本期目录 | 过刊浏览 |
基于纳米纤维素的三维组织工程支架多孔结构的调控与表征*
唐爱民(),赵姗,宋建康
华南理工大学制浆造纸国家重点实验室 广州 510640
Structure Control and Characterization of 3D Porous Scaffold Based on Cellulose-nanofibers for Tissue Engineering
Aimin TANG(),Shan ZHAO,Jiankang SONG
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640
引用本文:

唐爱民,赵姗,宋建康. 基于纳米纤维素的三维组织工程支架多孔结构的调控与表征*[J]. 材料研究学报, 2014, 28(10): 721-729.
Aimin TANG, Shan ZHAO, Jiankang SONG. Structure Control and Characterization of 3D Porous Scaffold Based on Cellulose-nanofibers for Tissue Engineering[J]. Chinese Journal of Materials Research, 2014, 28(10): 721-729.

全文: PDF(10494 KB)   HTML
摘要: 

本文将纳米纤维素(CNFs)与聚乙烯醇(PVA)混合, 采用冷冻干燥方法制备了纳米纤维素三维多孔组织工程支架。探讨CNFs悬浮液浓度、PVA的相对分子质量、CNFs与PVA的质量比以及冷冻温度对支架孔隙率、孔径分布以及机械性能的影响。结果表明: CNFs/高相对分子质量PVA支架具有梯度分布、内部连通的孔结构, PVA形成大孔的孔壁, 直径100-200 nm的CNFs束则在孔壁上桥接为类似于细胞外基质(ECM)中胶原骨架的网状结构; CNFs浓度为0.5%、CNFs与PVA的质量比为1∶2、冷冻温度为-80℃时, 支架内部微丝丰富且网络结构较好; 支架力学强度主要由PVA提供, 支架的压缩模量随PVA用量的增加而增大, 压缩模量在kPa数量级, 与软骨组织的弹性模量相当, 可通过改变PVA的添加量调节支架材料的力学性能。

关键词 复合材料纳米纤维素聚乙烯醇三维多孔组织工程支架    
Abstract

Three dimensional porous scaffolds for tissue engineering were fabricated by freeze drying a blend suspension of cellulose-nanofibers (CNFs) with poly (vinyl alcohol) (PVA), while the Influences of the concentration of CNFs suspension, the mass ratio of CNFs to PVA, the relative molecular mass (mass average) of PVA and the frozen temperature on the morphology and mechanical properties of the scaffolds were investigated. The results showed that: the scaffolds made of CNFs with high molecular mass (mass average) PVA displayed morphology of interconnected pores with irregular open pore geometry; PVA formed the wall of the big pores and which were bridged each other by CNFs bundles of 100-200 nm in diameter to form nest-like structure on the surface of the PVA wall throughout the scaffold, which was similar to collagen skeleton in extra cellular matrix (ECM); the optimal parameters for the fabrication of scaffolds with outstanding nest structure and abundant microfilaments are: mass fraction of CNFs to PVA was 1: 2 and the freezing temperature was -80℃. PVA played a key role in providing the mechanical strength of the scaffolds. The compressive modulus of the supports increased with the increasing amount of PVA, and it was equivalent to that of cartilage tissue, a magnitude of kilopascal, and besides, the mechanical properties of the scaffolds can be adjusted by changing the amount of PVA.

Key wordscomposites    cellulose-nanofibers (CNFs)    polyvinyl alcohol    three-dimensional porous    tissue engineering scaffolds
收稿日期: 2014-06-04     
基金资助:* 国家重点基础研究发展计划2010CB732206资助项目。
Sample code Consistency of CNFs/ (mass fraction, %) Amount of PVA /g Frozen temperature /℃ Relative molecular mass (mass average) of PVA, Mw CNFs:PVA (mm)
01580H 0 1.5 -80 146000-186000 0∶1.5
31580H 0.3 1.5 -80 146000-186000 0.3∶1.5
51380H 0.5 1.5 -80 146000-186000 0.5∶1.5
51280H 0.5 1 -80 146000-186000 0.5∶1.0
51180H 0.5 0.5 -80 146000-186000 0.5∶0.5
51220H 0.5 1 -20 146000-186000 0.5∶1.0
512NH 0.5 1 Liquid nitrogen 146000-186000 0.5∶1.0
01580L 0 1.5 -80 89000-98000 0∶1.5
31580L 0.3 1.5 -80 89000-98000 0.3∶1.5
51380L 0.5 1.5 -80 89000-98000 0.5∶1.5
51280L 0.5 1 -80 89000-98000 0.5∶1.0
51180L 0.5 0.5 -80 89000-98000 0.5∶0.5
51220L 0.5 1 -20 89000-98000 0.5∶1.0
512NL 0.5 1 Liquid nitrogen 89000-98000 0.5:1.0
表1  三维多孔组织工程支架的制备条件及编号
图1  纳米纤维素与高相对分子质量PVA质量比为0∶1.5、0.5∶0.5、0.5∶1.5的支架材料的数码照片
图2  1.5 g高相对分子质量PVA分别添加到100 g质量分数0%、0.3%和0.5%的CNFs悬浮液中在-80℃冷冻制备的支架的SEM像
图3  1.5 g低相对分子质量PVA分别添加到100 g质量分数0%、0.3%和0.5%的CNFs悬浮液中在-80℃冷冻制备的支架的SEM像
图4  将0.5 g、1.0 g和1.5 g高相对分子质量PVA分别添加到100 g 0.5%的CNFs悬浮液中在-80℃冷冻制备的支架的SEM像
图5  1.0 g高相对分子质量PVA添加到100 g 0.5%的CNFs悬浮液中分别在-20℃ (a、d、g、j)、-80℃ (b、e、h、k)和液氮 (c、f、i、l)冷冻制备的支架的SEM像
图6  高相对分子质量PVA/CNFs支架材料的压缩模量与PVA添加量的关系
1 HUANG Jianwen,XU Yuemin, Application of bacterial cellulose in tissue engineering, Chinese Journal of Tissue Engineering Research, 18(3), 420(2014)
1 (黄建文, 徐月敏, 细菌纤维素在组织工程中的应用, 中国组织工程研究, 18(3), 420(2014))
2 D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, A. Dorris,A new family of nature-based materials, Nanocelluloses, 50(24), 5438(2011)
3 J. Andersson, H. Stenhamre, H. B?ckdahl, P. Gatenholm,Behavior of human chondrocytes in engineered porous bacterial bcellulose scaffolds, Journal of Biomedical Materials Research Part A, 94(4), 1124(2010)
4 M. Zaborowska, A. Bodin, H. B?ckdahl, J. Popp, A. Goldstein, P. Gatenholm,Microporous bacterial cellulose as a potential scaffold for bone regeneration, Acta Biomaterialia, 6(7), 2540(2010)
5 H. B?ckdahl, M. Esguerra, D. Delbro, B. Risberg, P. Gatenholm,Engineering microporosity in bacterial cellulose scaffolds, Journal of Tissue Engineering and Regenerative Medicine, 2(6), 320(2008)
6 CAI Zhijiang,HOU Chengwei, Preparation and characterization of bacterial cellulose/chitosan composite porous scaffold, Polymer Materials Science and Engineering, 28(6), 121(2012)
6 (蔡志江, 侯成伟, 细菌纤维素/壳聚糖复合多孔支架材料的制备与表征, 高分子材料科学与工程, 28(6), 121(2012))
7 CAI Zhijiang, HOU Chengwei,Preparation and characterization of bacterial cellulose/gelatin composite porous scaffold, Polymer Materials Science and Engineering, 28(8), 140(2012)
7 (蔡志江, 侯成伟, 细菌纤维素-明胶复合多孔支架材料的制备与表征, 高分子材料科学与工程, 28(8), 140(2012))
8 M. Bhattacharya, M.M. Malinen, P. Lauren, LOU YanRu, S.W. Kuisma, L. Kanninen, M. Lille, A. Corlu, Christiane GuGuen-Guillouzo, O. Ikkala, A. Laukkanen, A. Urtti, M. Yliperttula,Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture, Journal of Controlled Release, 164(3), 291(2012)
9 SONG Jiankang, TANG Aimin, LIU Tingting, WANG Jufang,Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication, Nanoscale, 5(6), 2482(2013)
10 R. G. Flemminga, C. J. Murphya, G. A. Abramsa, S. L. Goodmanb, P. F. Nealey,Effects of synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials, 20(6), 573(999)
11 WU Linbo, DING Jiandong,Advances in fabrication methodolody and technology of three-dimensional porous scaffolds for tissue engineering, Journal of Functional Polymers, 16(1), 91(2003)
11 (吴林波, 丁建东, 组织工程三维多孔支架的制备方法和技术进展, 功能高分子学报, 16(1), 91(2003))
12 ZHANG Renji, LIU Li, XIONG Zhuo, YAN Yongnian, WANG Xiaohong, JIN Le,Novel rapid prototyping method to fabricate poly(lactide-co-glycolide) scaffold with high porosity, Journal of Mechanical Engineering, 46(5), 105(2010)
12 (张人佶, 刘利, 熊卓, 颜永年, 王小红, 金乐, 高孔隙率聚(乳酸—羟基乙酸)共聚物组织工程支架快速成形新工艺, 机械工程学报, 46(5), 105(2010))
13 J. Scott,Hollister, Porous scaffold design for tissue engineering, Nature Materials, 4(7), 518(2005)
14 Thi Thi Nge, Masaya Nogi, Hiroyuki Yano, Junji Sugiyama,Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold, Cellulose, 17(2), 349(2010)
15 H. L. Wang, Y. Zou, L. Zhang, W. H. Yang, Q. Zou, S. Zhou, Y. B. Li,Preparation and characterisation of nanohydroxyapatite-sodium alginate-polyvinyl alcohol composite scaffold, Mater Research Innovations, 14(5), 375(2010)
16 Nihal Engin Vrana, Paul A. Cahill, Garrett B. McGuinness,Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: Effect of disturbed shear stress conditions, Journal of Biomed. Materials Research Part A, 94(4), 1080(2010)
17 A. S. Asran, S. Henning, G. H. Michler,Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level, Polymer, 51(4), 868(2010)
18 V. Karageorgiou, D. Kaplan,Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26(27), 5474(2005)
19 R. S. Delguerra, M. G. Cascone', D. Ricci, S. Martinoia, M. T. Parodi, A. Ahluwalia, J. A. Vanmourik, M. Grattarola,Optimization of the interaction between ethylenevinyl alcohol copolymers and human endothelial cells, Journal of Materials Science: Materials in Medicine, 7(1), 8(1996)
20 Klaus von der Mark,Jung Park, Sebastian Bauer, Patrik Schmuki,Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix, Cell Tissue Research, 339(1), 131(2010)
21 XIAO Jianhui, DUAN Hucheng, LIU Zhao, WU Zheng, LAN Yuqing, ZHANG Wei, LI Chaoyang, CHEN Fen, ZHOU Qiang, WANG Xiaoran, HUANG Junqi, WANG Zhichong,Construction of the recellularized corneal stroma using porous acellular corneal scaffold, Biomaterials, 32(29), 6962(2011)
22 CAO Bin, YIN Jingbo, YAN Shifeng, CUI Lei, CHEN Xuesi, XIE Yongtao,Porous scaffolds based on cross-linking of poly (L-glutamic acid), Macromolecular Bioscience, 11(3), 427(2011)
23 A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher,Matrix elasticity directs stem cell lineage specification, Cell, 126(4), 677(2006)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.