Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (3): 225-230    
  研究论文 本期目录 | 过刊浏览 |
应力对FeCrMoCu合金阻尼性能的影响
胡小锋, 刘树伟, 李秀艳, 戎利建
(中国科学院金属研究所 沈阳 110016)
Influence of Stress on Damping Behavior of FeCrMoCu Alloy
HU Xiaofeng* LIU Shuwei LI Xiuyan RONG Lijian
(Institute of Metal Research, Chinese Academy of Science, Shenyang 110016)
引用本文:

胡小锋,刘树伟,李秀艳,戎利建. 应力对FeCrMoCu合金阻尼性能的影响[J]. 材料研究学报, 2013, 27(3): 225-230.
HU Xiaofeng, LIU Shuwei, LI Xiuyan, RONG Lijian. Influence of Stress on Damping Behavior of FeCrMoCu Alloy[J]. Chinese Journal of Materials Research, 2013, 27(3): 225-230.

全文: PDF(3842 KB)  
摘要: 

用动态力学分析仪(DMA)的三点弯和双悬臂方法测量FeCrMoCu合金的阻尼性能, 通过ABAQUS有限元模拟分析测量过程中试样的应力分布, 研究了应力对FeCrMoCu合金阻尼行为的影响。结果表明: 测量阻尼时预载荷使样品产生应力集中, 使样品的磁畴壁发生移动从而降低了合金的阻尼性能。应力越大磁畴的可动性越低, 对合金阻尼性能的影响也越大。应力的加载方式也对FeCrMoCu合金阻尼性能有较大的影响, 预载荷使双悬臂模式下样品上下表面都受到压应力, 因此需要较大的应力才能使样品的磁畴结构达到饱和。其结果是对应的应变振幅较大, 测得的最大阻尼性能偏低。而三点弯测试时, 由于上下表面分别受到压应力和拉应力, 应力的叠加使合金磁畴达到饱和的应变振幅较小, 测得的较大。

关键词 金属材料FeCrMoCu阻尼合金ABAQUS应力动态力学分析仪    
Abstract

Three point bending and dual cantilever model of dynamic mechanical analyzer (DMA) were used to measure the damping capacity of FeCrMoCu alloy, and ABAQUS software was selected to analysis the stress distribution of sample during damping test. The influence of stress on damping behavior of FeCrMoCu alloy was studied. The results show that there obviously exists stress concentration due to pre- load during damping test, which will cause the move of magnetic domain wall. With increasing stress, the mobility of domain wall will be lowered and the damping capacity of FeCrMoCu alloy decreases obviously. There is obvious influence of stress loading mode on damping behavior of FeCrMoCu alloy. For dual cantilever model, there always exists compressive stress at the upper and lower surface of test sample and a greater stress is needed to saturate domain structure. Therefore, the strain amplitudeεmax is bigger and the maximum damping capacity Q-1max is lower. While 3 point bending model was used to test damping capacity, in the upper and lower surface of sample there exist compressive stress and tensile stress respectively. During damping test, the imposed stress will lead to overlay effect. The magnetic domain structure will saturate at lower strain amplitude εmax and the maximum damping capacity Q-1max is higher.

Key wordsmetallic materials    FeCrMoCu    damping alloy    ABAQUS    stress    dynamic mechanical analyzer (DMA)
收稿日期: 2013-02-27     
ZTFLH:  TG135  

1 I. S. Golovin, Mechanism of damping capacity of high-chromium steels and α-Fe and its dependence on some external factors, Metall. Mater. Trans. A, 25(1), 111(1994)
2 A. Karimi, P. H. Giauque, J. L. Martin, Magnetomechanical damping in plasma sprayed iron-chromium based coatings, J. Appl. Phys., 79(3), 1670(1996)
3 HU Xiaofeng, LI Xiuyan, ZHANG Bo, RONG Lijian, LI Yiyi, Influences of additions of Nb, Ti and Cu on damping capacity and corrosion resistance of Fe-13Cr-2.5Mo alloy, Acta Metall. Sin., 45(6), 717(2009)
(胡小锋, 李秀艳, 张 波, 戎利建, 李依依, Nb, Ti和Cu对Fe--13Cr--2.5Mo合金阻尼与腐蚀性能的影响, 金属学报, 45(6), 717(2009))
4 V. F. Coronel, D. N. Beshers, Magnetomechanical damping in iron, J. Appl. Phys., 64(4), 2006(1988)
5 D. Pulino-Sagradi, M. Sagradi, A. Karimi, J. L. Martin, Damping capacity of Fe-Cr-X high-damping alloys and its dependence on magnetic domain structure, Scripta Mater., 39(2), 131(1998)
6 T.S. Ge, Theoretical Principle of Solid Internal Friction - relaxation and Structure of Grain Boundary (Beijing, Science press, 2000) p.40)
(葛庭燧, 固体内耗理论基础-晶界弛豫与晶界结构 (北京, 科学出版社, 2000) p. 40)
7 A. Riviere, Measurement of high damping: techniques and analysis, J. Alloys Compd., 355(1-2), 201(2003)
8 I. G. Ritchie, Z. L. Pan, High-damping metals and alloys, Metall. Trans. A, 22(3), 607(1991)
9 J. Zhang, R. J. Perez, C. R. Wong, E. J. Lavernia, Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites, Mater. Sci. Eng. R, 13(8), 325(1994)
10 LIN Renrong, LIU Fang, CAO Mingzhou, YANG Rui, Influence of annealing and substitution elements on damping capacity and strength of Fe-Cr-Al based alloys, Acta Metall. Sin., 41(9), 958(2005)
(林仁荣, 刘 芳, 曹名洲, 杨 锐, 退火及置换元素对Fe-Cr-Al基合金阻尼性能及强度的影响, 金属学报, 41(9), 958(2005))
11 S. H. Chang, S. K. Wu, Isothermal effect on internal friction of Ti50Ni50 alloy measured by step cooling method in dynamic mechanical analyzer, J. Alloys Compd., 459(1-2), 155(2008)
12 F. X. Yin, S. Takamori, Y. Ohsawa, A. Sato, K. Kawahara, The effects of static strain on the damping capacity of high damping alloys, Mater. Trans., 43(3), 466(2002)
13 X. F. Hu, X. Y. Li, B. Zhang, L. J. Rong, Y. Y. Li, Magnetic domain structure and damping capacity of Fe-13Cr-2.5Mo alloy, Mater. Sci. Eng. B, 171(1-3), 40(2010)
14 Z. C. Zhou, J. N. Wei, F. S. Han, Influences of heat treatment and grain size on the damping capacity of an Fe-Cr-Al alloy, Phys. Status Solidi A, 191(1), 89(2002)
15 H. Masumoto, S. Sawaya, M. Hinai, On the damping capacity of Fe-Cr alloys, Trans. Japan Inst. Met., 20(8), 409(1979)
16 X. F. Hu, S. W. Liu, X.Y. Li, B. Zhang, L. J. Rong, F. X. Yin, Y. Y. Li, Influence of static stress on damping behavior in Fe-15Cr and Fe-8Al ferromagnetic alloys, Mater. Sci. Eng. A, 528(16-17), 5491(2011)
17 G. W. Smith, J. R. Birchak, Internal stress distribution theory of magnetomechanical hysteresis-an extension to include effects of magnetic field and applied stress, J. Appl. Phys., 40(13), 5174(1969)
18 G. W. Smith, J. R. Birchak, Effect of internal stress distribution on magnetomechanical damping, J. Appl. Phys., 39(5), 2311(1968)
19 ZHONG Wending, Ferromagnetism (Volume II) (Beijing, Science Press, 1987), p.139
(钟文定, 铁磁学(中册) (北京, 科学出版社, 1987) p.139)
20 R. Schaller, G. Fantozzi, G. Gremaud, Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science (Zuerich, Trans Tech Publications Ltd, 2001) p.461

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.