Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 7-12    
  研究论文 本期目录 | 过刊浏览 |
多壁碳纳米管/天然橡胶复合材料的结构和动态性能*
宋博 高雨 王娜 韩文驰 张鹏宇 方庆红
(沈阳化工大学材料科学与工程学院 沈阳 110142)
Properties of Multi-Walled Carbon Nano-Tubes (CNTs)/Natural Rubber (NR) Composites
SONG Bo GAO Yu WANG Na HAN Wenchi ZHANG Pengyu FANG Qinghong**
(School of Material Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142)
引用本文:

宋博 高雨 王娜 韩文驰 张鹏宇 方庆红. 多壁碳纳米管/天然橡胶复合材料的结构和动态性能*[J]. 材料研究学报, 2013, 27(1): 7-12.
SONG Bo GAO Yu WANG Na HAN Wenchi ZHANG Pengyu FANG Qinghong**. Properties of Multi-Walled Carbon Nano-Tubes (CNTs)/Natural Rubber (NR) Composites[J]. Chinese Journal of Materials Research, 2013, 27(1): 7-12.

全文: PDF(5369 KB)  
摘要: 以HNO3/H2SO4改性的多壁碳纳米管(CNTs)为原料, 制备多壁碳纳米管(CNTs)/天然橡胶(NR)复合材料, 研究了在NR中填充CNTs对其力学性能、动态性能、Payne效应、压缩生热和损耗因子的影响。结果表明: 经HNO3/H2SO4混合酸改性的CNTs表面含有氢原子、含氧官能团和自由基, 增强了大管径CNTs与橡胶基体间界面结合, 如物理吸附、氢键作用、化学结合等。其结果是, 随着CNTs管径的增大, 对复合材料的补强作用增强, 压缩温升小, 其Payne效应也降低; 损耗因子(tanδ)越大压缩温升越高; 填充不同管径CNTs的份数越大, 碳纳米管之间的平均距离减小, 更易形成聚集体, 其复合材料的Payne效应越大。
关键词 复合材料碳纳米管 天然橡胶 Payne效应 压缩生热    
Abstract:ABSTRACT A mixture of concentrated HNO3/H2SO4 was used to modify the multi-walled carbon nano-tubes (CNTs) and the multi-walled carbon nano-tubes (CNTs)/natural rubber(NR) composites were prepared. The influence of the structure of CNTs on the mechanical properties, dynamic properties, payne-effect, the dynamic heat generation and tanδ of multi-walled carbon nano-tubes (CNTs)/natural rubber(NR) composites were investigated. The results show that after acid treatment the free functional groups, atoms of hydrogen and oxygen functional groups formed on the surface of CNTs, the interactions between large diameter CNTs and the rubber matrix such as physical absorption, hydrogen bonding and chemical bonding were improved; and with increase of diameter of CNTs in the nanocomposite, the characteristic values of temperature dropped, the tensile strength exhibited an upward trend, and the payne-effects of filler-filler decreased obviously. Temperature and tanδ rising trend were consistent. With the increase of the amounts of CNTs filled to the composite, inter-aggregate distance of CNTs was decrease and easy to form CNTs aggregating, leding to the payne-effect increased.
    
ZTFLH:  TB332  
1 ZHANG Wenyu, Carbon nanometer tubes and its application, Journal of Yunan University, 27(3), 151(2005)
(张文毓, 碳纳米管及其应用, 云南大学学报, 27(3), 151(2005))
2 WANG Qikun, LIU Weihua, DOU Juying, ZHU Changchun, Investigation of the odd carbon nanotubes obtained by arc discharge, Journal of Xi An Jiao Tong university, 35(4), 382(2001)
(王琪琨, 刘卫华, 窦菊英, 朱长纯, 电弧法获得难得几种奇异碳纳米管的研究, 西安交通大学学报, 35(4), 382(2001))
3 SUI Gang, ZHOU Xiangwen, LIANG Ji, ZHU Yuefeng, Physical properties of carbon nanotubes/natural rubbercomposites, J. TsinghuaUniv(Sci &Tech), 45(2), 151(2005)
(隋 刚, 周湘文, 梁 吉, 朱跃峰, 碳纳米管/天然橡胶复合材料的物理性能, 清华大学学报(自然科学版), 45(2), 151(2005))
4 TAO Yong, GAO Zi, Progressof research on carbon nanotubes, China Academic Journal Electronic Publishing, 4(4), 238(2006)
(陶 泳, 高 滋, 碳纳米管及其研究进展,化学世界, 4(4), 238(2006))
5 ZOU Hanbo, DONG Xinfa, LIN Weiming, A new chemical industrial material carbonnanotubes, New Chemical Materials, 30(7), 6(2002)
(邹汉波, 董新法, 林维明, 化工新型材料-碳纳米管, 化工新料, 30(7), 6(2002))
6 JIANG Jing, JIA Hongbing, JIANG Qi, ZHU Lijuan, FANG Eryuan, WANG Jingyi, Thermal behavior of solution polymerized styrene-butadiene rubber reinforced with couple agentmodified multiwalled carbon nanotubes, China Synthetic Rubber Industry, 34(4), 296(2011)
(蒋 静, 贾红兵, 蒋 琪, 祝丽娟, 房尔园, 王经逸, 偶联剂改性多壁碳纳米管填充溶聚丁苯橡胶的耐热性能, 合成橡胶工业, 34(4), 296(2011))
7 S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(7), 56(1991)
8 Y. Ikeda, A. Tanaka, S. Kohjiya, Reinforcement of NR by silica generated in situ, Journal of Materials Chemistry, 7(8), 1497(1997)
9 C. Zilg, P. Reichert, F. Dietsche, Plastics and rubber nanocomposites based up on layered silicates, 88(10), 1812(1998)
10 S. J. Wang, C. F. Long, X. Y. Wang, Synthesis and properties of silicone rubber/ organomontmor illonite hybrid nanocomposites, Journal of Applied Polymer Science, 69(8), 1557(1998)
11 J. Sandler, M. S. P. Shaffer, T. Prasse, Development of adispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical proper ties, Polymer, 40(5), 5967(1999)
12 PENG Niusheng, LIU Weiliang, LIU Shaoyang, Study on surface modification and dispersion process of multiwalled carbon nanotubes, Journal of Ceramics, 32(1), 37(2011)
(彭牛生, 刘维良, 刘绍洋, 壁碳纳米管的表面改性与分散工艺研究, 陶瓷学报, 32(1), 37(2011))
13 CAO Maosheng, LIU Haitao, LI Chensha, An approch to surface treating for carbon nanotubes, China Surface Engineering, 4(6), 32(2002)
(曹茂盛, 刘海涛, 李辰砂, 陈玉金, 马文有, 碳纳米管表面处理技术的研究, 中国表面工程, 4(6), 32(2002))
14 ZHAN Yanhu, WU Jinkui, YAN Ning, XIA Hesheng, Preparation of natural rubber/styrene butadiene rubber/carbon black/Carbon nanotubes nanocomposites through ultrasonic dispersion, Polymer Materials Science and Engineering, 27(1), 130(2011)
(战艳虎, 伍金奎, 闫 宁, 夏和生, 超声分散制备天然橡胶/丁苯橡胶/炭黑/碳纳米管纳米复合材料, 高分子材料科学与工程, 27(1), 130(2011))
15 E. T. Thostenson, Z. F. Ren, T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites, Compos. Sci. Technol., 61(1), 1899(2001)
16 J. Liu, A. G. Rinzler, H. J. Dai, Fullerene pipes, Science, 280, 1253(1998)
17 Q. D. Chen, L. M. Dai, M. Gao, Plasma activation of carbon nanotubes for chemical modification, Journal of Physical Chemistry B, 105, 618(2001)
18 L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Applied Physics Letters, 73(9), 1197(1998)
19 ZHOU Xiangwen, ZHU Yuefeng, XIONG Guoping, LIANG Ji, YU Suyuan, Physical and chemical mechanism of mechanical mixing of powder styrene-butadiene rubber composites filled with high contents of carbon nanotubes, Chemical journal of Chinese universities, 30(3), 601(2009)
(周湘文, 朱跃峰, 熊国平, 梁 吉, 于溯源, 高填充量碳纳米管/丁苯粉末橡胶机械混炼的物理化学机制, 高等学校化学学报, 30(3), 601(2009))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.