Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 32-36    
  研究论文 本期目录 | 过刊浏览 |
石英纤维/纳米羟基磷灰石/聚酰胺66复合生物材料的制备和性能*
陈抒天 李 鸿 郝新彦 王广妮 樊晓霞 严永刚
(四川大学物理科学与技术学院 成都 610064)
Preparation and Properties of QF/n-HA/PA66 Composite Biomaterial
CHEN Shutian LI Hong HAO Xinyan WANG Guangni FAN Xiaoxia YAN Yonggang**
(College of Physical Science and Technology, Sichuan University, Chengdu 610064)
引用本文:

陈抒天 李 鸿 郝新彦 王广妮 樊晓霞 严永刚. 石英纤维/纳米羟基磷灰石/聚酰胺66复合生物材料的制备和性能*[J]. 材料研究学报, 2013, 27(1): 32-36.
CHEN Shutian LI Hong HAO Xinyan WANG Guangni FAN Xiaoxia YAN Yonggang**. Preparation and Properties of QF/n-HA/PA66 Composite Biomaterial[J]. Chinese Journal of Materials Research, 2013, 27(1): 32-36.

全文: PDF(5113 KB)  
摘要: 用挤出法制备石英纤维(quartz fibre, QF)/纳米羟基磷灰石(nano-hydroxyapatite, n-HA)/聚酰胺66(polyamide 66, PA66)复合材料(QF/n-HA/PA66), 表征了其结构、形貌、力学性能和细胞毒性。结果表明: QF均匀地分散在n-HA/PA66中, 且与PA66基体存在氢键结合; 复合材料的力学性能随着石英纤维含量的增加而增大, 当石英纤维含量为38%时复合材料的抗拉强度为81 MPa, 抗压强度为190 MPa, 抗弯强度为195 MPa(比人体皮质骨的高); n-HA/PA66基体所承受的载荷传递给QF纤维, 纤维轴向传递使应力迅速扩散, 这种传递作用在一定程度上起到了力的分散作用, 从而增强了材料承受外力作用的能力, 导致材料的弯曲强度、拉伸强度等力学性能的显著提高。QF/n-HA/PA66复合材料无细胞毒性, 满足承重骨修复材料的要求。
关键词 复合材料石英纤维纳米羟基磷灰石/聚酰胺66生物材料细胞毒性    
Abstract:ABSTRACTS Quartz fibre/nano-hydroxyapatite/polyamide 66 (QF/n-HA/PA66) composite biomaterial was prepared by extrusion method in this study. The composition and morphology of the composite were characterized by FT-IR, XPS, XRD and SEM. The mechanical strength was tested by universal material testing machine and the cytotoxicity was evaluated using L929 cell line. The results showed that QF was uniformly dispersed in n-HA/PA66, with the hydrogen bond formed between QF and PA66. The mechanical strength of QF/n-HA/PA66 composite biomaterial was improved with the increase of the quartz fibre content. When the QF content (mass fraction) increased to 38%, the composite’ tensile strength, compressive strength and flexural strength reach 81 MPa, 190 MPa and 195 MPa respectively, higher than those of human cortical bone. The load bearing on the n-HA/PA66 composite matrix transferred to QF fibre, and the load bearing rapidly diffused in all directions because of stress transmission along the axial direction of the QF fibre. While this stress transmission had an efficacy of load disperse in some extent, thus enhanced the capability of the composites adapting to loadings, and the mechanical strength of QF/n-HA/PA66 remarkably increased. After 3 days of culture with the L929 cell line, no negative effects of the composite on cell viability were observed, demonstrating that the composite had no cytoxicity.
    
ZTFLH:  TB332  
1 WANG Lijuan, WANG Jian, WANG Yanpeng, ZHAO Xunzhi, LI Guijie, Research advance in degradation of polymer nanocomposites, Advances in Fine Petrochemicals, 6(10), 35(2005)
(王立娟, 王 鉴, 王焱鹏, 赵训志, 李桂杰, 聚合物纳米复合材料降解的研究进展, 精细石油化工进展, 6(10), 35(2005))
2 CHEN Jiazheng, LI Xiaoying, HAN Yongping, Research on preparation of bone material, Journal of Southwest University for Nationalities (Natural Science Edition), 36(5), 787(2010)
(陈佳正, 李晓英, 韩泳平, 骨组织材料制备研究, 西南民族大学学报(自然科学版), 36(5), 787(2010))
3 LIU Yunxiang, LIU Tinghua, Research progress of the wear and friction behavior and its mechanism of UHMWPE, Modern Plastics Processing and Applications, 16(4), 55(2004)
(刘云湘, 刘廷华, UHMWPE摩擦磨损性能及其机理的研究进展, 现代塑料加工应用, 16(4), 55(2004))
4 GAO Jie, CAO Zhikui, GE Peipei, Research and application of modified pom materials, Chemical Engineering Design, 22(3), 44(2012)
(高 洁, 曹志奎, 葛沛沛, 改性聚甲醛材料的研究及应用现状, 化工设计, 22(3), 44(2012))
5 SANG Peiming, ZHANG Ming, Research status and advances of nano-hydroxyapatite /polyamide66 composite, Medical Recapitulate, 18(13), 2072(2012)
(桑裴铭, 张 明, 医用纳米羟基磷灰石/聚酰胺66复合生物材料研究现状及进展, 医学综述, 18(13), 2072(2012))
6 FANG Xiuhua, WANG Ning, Clinical application and nursing care of high-intensity quartz fibre pile and resin core technology, Chinese Nursing Research, 26(2), 447(2012)
(方秀华, 王 宁, 高强度石英纤维桩树脂核技术的临床应用与护理, 护理研究, 26(2), 447(2012))
7 YAN Yonggang, LI Yubao, WANG Jianxin, FENG Jianqing, HUANG Mei, Study on preparation and properties of polyamide 66/nanoapatite composites, China Plastics Industry, 28(3), 28(2000)
(严永刚, 李玉宝, 汪建新, 冯建清, 黄 玫, 聚酰胺66/羟基磷灰石复合材料的制备和性能研究, 塑料工业, 28(3), 28(2000))
8 ZHANG Xiang, LI Yubao, ZUO Yi, Lü Guoyu, Dynamic mechanical analysis on nano-hydroxyapatite reinforced polyamide 66 composites, Journal of Functional Materials, 38(3), 419(2007)
(张 翔, 李玉宝, 左 奕, 吕国玉, 纳米羟基磷灰石增强聚酰66复合材料动态力学性能分析, 功能材料, 38(3), 419(2007))
9 XING Jianshen, WANG Shubin, ZHANG Yue, Crystallization of quartz fiber, Acta Materiae Compositae Sinica, 23(6), 75(2006)
(邢建申, 王树彬, 张 跃, 石英纤维析晶行为, 复合材料学报, 23(6), 75(2006))
10 ZHANG Xiang, LI Yubao, Lü Guoyu, ZUO Yi, MU Yuanhua, WU Lan, The study on interaction mechanism between n-HA and PA66 in n-HA/PA66 biocomposites, Journal of Functional Materials, 6 (36), 896(2005)
(张 翔, 李玉宝, 吕国玉, 左 奕, 牟元华, 吴 兰, n-HA/PA66复合材料中两相间作用机理研究, 功能材料, 6(36), 896(2005))
11 Li Yubao, C.P.A.T.Klein, Zhang Xingdong, K. de Groot, Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics, Journal of Materials and Science: Material in Medicine, 15(10), 835(1994)
12 LIU Yonglei, LI Hong, Lü Guoyu, NAN Jingtian, LUO Xiaoman, YAN Yonggang, The study on preparation and interface of n-HA/ poly (amino acid) composite, Journal of Functional Materials, 4(41), 566(2010)
(刘永磊, 李 鸿, 吕国玉, 南景天, 罗小满, 严永刚, n-HA/多元氨基酸共聚物复合材料的制备和界面研究, 功能材料, 4(41), 566(2010))
13 ZHANG Shihua, CHEN Guang, CUI Cong, MI Cheng, GU Jinping, YU Jingjing, Effect of silicon coupling agent treatment of glass fiber on mechanical properties of GFRMCN, Acta Materiae Compositae Sinica, 23(3), 31(2006)
(张士华, 陈 光, 崔 崇, 米 成, 顾金萍, 于静静, 偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响, 复合材料学报, 23(3), 31(2006))
14 LI Cui, Different bone dental implant restoration and way pretest, Master thesis, Central South University Xiangya School of Dental Medicine (2008)
(李 翠, 不同骨质牙种植体修复及其方式初探, 硕士学位论文, 中南大学湘雅口腔医学院(2008))
15 LI Yubao, Biomedical Materials, 1 (Beijing, Chemical Industry Press, 2003) p.173
(李玉宝, 生物医学材料, 1(北京, 化学工业出版社, 2003)p.173)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.