Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 443-448    
  研究论文 本期目录 | 过刊浏览 |
X100级管线钢的组织和强韧性
段琳娜1,2, 刘清友2,  贾书君2,  贾成厂1,  谭峰亮2,3,
1.北京科技大学材料科学与工程学院 北京 100083
2.钢铁研究总院结构所 北京 100081
3.昆明理工大学冶金与能源工程学院 昆明 650093
Microstructure Characteristics and Strength-toughness of X100 Pipeline Steel
DUAN Linna1,2,  LIU Qingyou2,  JIA Shujun2, JIA Chengchang1,  TAN Fengliang2,3
1.School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2.Institute for Structural Materials of CISRI, Beijing 100081
3.Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
引用本文:

段琳娜 刘清友 贾书君 贾成厂 谭峰亮. X100级管线钢的组织和强韧性[J]. 材料研究学报, 2012, 26(4): 443-448.
, . Microstructure Characteristics and Strength-toughness of X100 Pipeline Steel[J]. Chin J Mater Res, 2012, 26(4): 443-448.

全文: PDF(972 KB)  
摘要: 用光学显微镜、扫描电镜、透射电镜和EBSD等方法研究了X100管线钢热连轧钢带的微观组织、析出物、晶粒尺寸等对X100管线钢强韧性的影响。结果表明, 通过合理的成分设计和TMCP工艺得到的X100管线钢的平均有效晶粒尺寸约为2.38 μm, 晶内含有大量位错和亚结构;显微组织由粒状贝氏体、板条贝氏体和M/A岛组成, 组织中粒状贝氏体含量较多, 板条贝氏体含量较少, M/A岛尺寸较小, 弥散分布;细小的第二相能有效钉扎位错的移动, 产生沉淀强化效果;实验钢的抗拉强度高于970 MPa, 屈服强度高于800 MPa, -40℃以上的Charpy冲击功大于250 J, 韧脆转变温度在-40℃与-60℃之间。
关键词 金属材料X100管线钢微观组织粒状贝氏体EBSD强韧性    
Abstract:The effects of microstructure, precipitate and grain size on strength and toughness of X100 hot rolled strips steel were investigated by means of optical  icroscope, scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) in this article. The results show that average effective grain size of X100 pipeline steel with reasonable composition design reaches to 2.38 μm after selected thermo-mechanical control process  (TMCP), and  there are a great quantity of dislocations and substructures in grains. Microstructure of X100 strips mainly consists of granular bainite, lath bainite with plenty of fine M/A islands dispersing in the matrix or on grain boundaries. Fine precipitation particles can pin dislocation effectively, tensile strength of tested steel are higher than 970 MPa, yield strength are higher than 800 MPa, Charpy impact energy (higher than −40oC) are higher than 250 J, and ductile brittle transition temperature is between −40oC   and −60oC .
Key wordsmetallic materials    X100 pipeline steel    microstructure    granular bainite    EBSD    strength and toughness
收稿日期: 2012-04-16     
ZTFLH: 

TG142

 
1 Tanguy B, Plastic and Damage Behavior of a High Strength X100 Pipeline Steel: Experiments and Modeling, Int J Pressure Vessels Piping, 85(5), 322(2008)

2 LIAO Bo, XIAO Furen, Research on Microstructure and Strength2toughening Mechanism of Acicular Ferrite Pipeline Steel, Transactions of Materials and Heat Treatment, 30(2),57(2009)

(廖  波, 肖福仁, 针状铁素体管线钢组织及强韧化机理研究, 材料热处理学报,  30(2), 57(2009))

3 SUN Jun, Boyd J D. Effect of Thermomechanical Processing on Antisotropy of Cleavage Fracture stress in Microalloyed Linepipe Steel. International Journal of Pressure Vessels and Piping, 77, 367(2000)

4 Cotrina E, Iza-Mendia A, L´opez B, Study of the Ferrite Grain Coarsening behind the Transformation front by Electron Backscattered Diffraction Technique, Metall Mater Trans A, 35(3), 98(2004)

5 SUN Hong, Metallurgical Design and Development of High Deformable X100 Line Pipe Steels Suitable for Strain-Based Design, Welded Pipe and Tube, 33(8), 68(2010)

(孙 宏, 基于应变设计的大应变X100管线钢的成分设计与开发, 焊管,  33(8), 68(2010))

6 Hiroshi Tamehiro, High Strength X80 and X100 Line Pipe Steels, International Convention “Pipelines: The Energy Link”, 28(1996)

7 FANG Hongsheng, YANG Zhigang, YANG Jibo, BAI Bingzhe Research on Bainite Transformation in Steels, Acta Metallurgica Sinica, 41(5), 449(2005)

(方鸿生, 杨志刚, 杨金波, 白秉哲, 钢中贝氏体相变机制的研究, 金属学报,  41(5), 449(2005))

8 JI Haitao, WANG Xiaoxiang, MA Yajing, ZHANG Junfeng, Specification and Production of X100 Test Line Pipe, Welded Pipe and Tube, 34(4), 66(2010)

(纪海涛, 王晓香, 马亚静, 张军峰, X100试验管线钢管的规范和生产, 焊管,  34(4), 66(2010))

9 Elwazri A M, Varno R, Siciliano F, Ef fect of Cool Deformation on Mechanical Properties of a High-Strength Pipe-line Steel, Metallurgical and Materials Transactions A, 36(11), 2929(2005)

10 Shanmugam S , Misra R D K, Hartmann J, Microstructure of High Strength Niobium Containing Pipeline Steel, Materials Science and Engineering A, 441(1-2), 215(2006)

11 ZHAO Mingchun, YANG Ke, XIAO Furen, Continuous Cooling Transformation of Undeformed and Deformed Low Carbon Pipeline Steels, Materials Science and Engineering A, 335A(1-2), 131(2003)

12 ZHOU Min, MA Qiuhua, DU Linxiu, LIU Xianghua. Microstructure and Mechanical Properties of Pipeline Steel X100[J]. Journal of Northeastern University, 30(7), 987(2009)

(周  民, 马秋花, 杜林秀, 刘相华, X100管线钢的组织性能, 东北大学学报, 30(7), 987(2009))

13 YANG Jinghong, Investigation on Microstructure Control of Low Caron High Nb-bearing Pipeline Steel, (Beijing¡ University of Science and Technology Beijing, 2008) p.17

(杨景红, 低碳高铌管线钢组织细化的控制研究, (北京, 北京科技大学, 2008) p.17)

14 YONG Qilong, Secondary Phases in Steels, (Beijing, Metallurgical Industry Press, 2006) p.15

(雍岐龙,  钢铁材料中的第二相, (北京, 冶金工业出版社, 2006) p.15)

15 Diza F M, Iza M A, Gutierrez I, Analysis of Different Acicular Ferrite Microstructures in Low-Carbon Steels by Electron Backscattered Diffraction, Metall Mater Trans, 34A(11), 2511(2003)

16 Hwang B, Kim Y G, Lee S, Effective Grain size and charpy Impact Properties of High-Toughness X70 Pipeline Steels, Metall Mater Trans, 36A(8), 2113(2005)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.