Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 349-354    
  研究论文 本期目录 | 过刊浏览 |
Au修饰SnO2复合纳米材料的制备和气敏性能
陈雪松, 卢秋虹, 王海花, 孙振华
中国科学院金属研究所 沈阳 110016
Synthesis and GAS Sensing Properties of Au-modified SnO2 Composite Nanomaterials
CHEN Xuesong, LU Qiuhong, WANG Haihua, SUN Zhenhua
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陈雪松 卢秋虹 王海花 孙振华. Au修饰SnO2复合纳米材料的制备和气敏性能[J]. 材料研究学报, 2012, 26(4): 349-354.
, , , . Synthesis and GAS Sensing Properties of Au-modified SnO2 Composite Nanomaterials[J]. Chin J Mater Res, 2012, 26(4): 349-354.

全文: PDF(1109 KB)  
摘要: 以氯金酸和乙酰丙酮氯化锡为主要材料, 通过一步水热法制备了SnO2和Au修饰的SnO2(Au/SnO2)纳米粒子。使用TEM、EDS、XRD和XPS等手段对样品的形貌、组成及结构进行表征, 研究了两种材料对乙醇的气敏性能。结果表明, 两种纳米颗粒的尺寸都比较均一, 平均直径约为9--12 nm;SnO2为四方金红石结构, Au为面心立方结构;在Au/SnO2样品中, Au与SnO2的重量比为2.6%, Au元素主要以Au0的价态存在并含有少量的Au3+价态;与纯SnO2纳米粒子相比, Au修饰可显著提高气敏元件对乙醇响应的灵敏度和选择性。
关键词 复合材料SnO2Au修饰水热合成法气敏性能    
Abstract:SnO2 and Au modified SnO2 nanoparticles were prepared by one-pot hydrothermal synthesis method with HAucl4 and SnCl2(acac)2. The morphology, composition and structure of the samples were analyzed by TEM, EDS, XRD and XPS, and the gas sensing performance of the two materials for ethanol was tested. The results show that the morphology of both samples is nanoparticle, and the average diameter is about 9–12 nm. The crystal structure of SnO2 is rutile type, and Au is face centered cubic structure. In the sample of Au/SnO2, the mass ratio of Au and SnO2 is 2.6%, and Au element exists with a mixture of Au0 and Au3+ valence states. Comparing with pure SnO2 nanoparticles, Au modifing can significantly improve the sensitivity and selectivity of the gas sensors on the response to ethanol.
Key wordscomposite materials    SnO2    Au-modified    hydrothermal synthesis method    gas sensing performance
收稿日期: 2012-04-11     
ZTFLH: 

TB333

 
基金资助:

国家自然科学基金51001098和中国科学院金属所科研基金09NBA211A1资助项目。

1 X.X.Xu, J.Zhuang, X.Wang, SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures and their gas sensing properties, J. Am. Chem. Soc., 130(37), 12527(2008)

2 M.S.Park, G.X.Wang, Y.M.Kang, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries, Angew. Chem. Int. Ed., 46(5), 750(2007)

3 L.H.Jiang, G.Q.Sun, Z.H.Zhou, Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts, J. Phys. Chem. B, 109(18), 8774(2005)

4 J.Kaur, R.Kumar, M.C.Bhatnagar, Effect of indiumdoped SnO2 nanoparticles on NO2 gas sensing properties, Sensors and Actuators B, 126(2), 478(2007)

5 X.H.Liu, J.Zhang, X.Z.Guo, S.R.Wang, S.H.Wu, Coreshell α–Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties, RSC Advances, 2(4), 1650(2012)

6 J.Zhang, X.H.Liu, S.H.Wu, M.J.Xu, X.Z.Guo, S.R.Wang, Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor, J. Mater. Chem., 20(31), 6453(2010)

7 H.Huang, C.Y.Ong, J.Guo, T.White, M.S.Tse, O.K.Tan, Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors, Nanoscale, 2(7), 1203(2010)

8 A.Kolmakov, S.Potluri, A.Barinov, T.O.Mentes, L.Gregoratti, M.A.Nino, A.Locatelli, M.Kiskinova, Spectromicroscopy for addressing the surface and electron

transport properties of individual 1–D nanostructures and their networks, ACS Nano, 2(10), 1993(2008) 9 Y.Nagasawa, T.Choso, T.Karasuda, S.Shimomura, F.Ouyang, K.Tabata, Y.Yamaguchi, Photoemission study of the interaction of a reduced thin film SnO2 with oxygen, Surf. Sci., 433-435, 226(1999)

10 NIST X-ray Photoelectron Spectroscopy Database, Version 3.5(National Institute of Standards and Technology, Gaithersburg, 2003). http://srdata.nist.gov/xps/

11 M.Seruga, H.M.Metikos, T.Valla, M.Milun, H.Hoffschultz, K.Wandelt, Electrochemical and X-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution, J. Electroanal. Chem., 407(1-2), 83(1996)

12 Y.C.Liu, Enhancement in the raman scattering of polypyrrole electrodeposited on roughened gold substrates coated with gold monolayers, J. Phys. Chem. B, 108(9), 2948(2004)

13 X.Sun, S.Dong, E.Wang, One-step preparation of highly concentrated well-stable gold colloids by direct mix of polyelectrolyte and HAuCl4 aqueous solutions at room temperature, Journal of Colloid and Interface Science, 288(1), 301(2005)

14 W.Zhao, H.Y.Chen, Fabrication, characterization and application of gold nano-structured film, Electrochemistry Communications, 8(5), 773(2006)

15 K.Joudkazis, J.Joudkazyte, V.Jasulaitiene, A.Lukinsas, B.Sebeka, XPS studies on the gold oxide surface layer formation, Electrochemistry Communications, 2(7), 503(2000)

16 Y.Mikhlina, M.Likhatskia, Y.Tomashevicha, A.Romanchenkoa, S.Erenburgb, S.Trubina, XAS and XPS examination of the Au-S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions, Journal of Electron Spectroscopy and Related Phenomena, 177(1), 24(2010)

17 K.Rajecv, Srivastava, P.Lal, Sensing mechanism in tin oxide-based thick-film gas sensors, Sensors and Actuators B, 21(3), 213(1994)

18 O.Hisao, S.Hirokazu, M.Takahashi, Sensing mechanism of SnO2 thin film gas sensors, Sensors and Actuators B, 14(1-3), 677(1993)

19 L.B.Kong, Y.S.Shen, Gas-sensing property and mechanism of CaxLa1−xFeO3 ceramics, Sensors and Actuators B, 30(3), 217(1996)

20 P.Lu, S.Shishiyanu, L.Chow. Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing, Thin Solid Films, 516(10), 3338(2008)

21 XU Jianqiang, HAN Jianjun, XIE Bing, LIU Yun, Studies on Gas Sensitive Properties and Mechanism of Au-In2O3 Based CO Gas Sensor, Chinese Journal of Sensors and Actuators, 20(3), 481(2007)

(徐甲强, 韩建军, 谢 冰, 刘 云, Au--In2O3CO气体传感器的性能与机理研究, 传感技术学报,  20(3), 481(2007)

22 A.Kolmakov, M.Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett., 5(4), 667(2005)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.