Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 344-348    
  研究论文 本期目录 | 过刊浏览 |
取向电工钢中碳化物在冷变形过程中的行为
张茂华, 毛卫民
北京科技大学材料学系~新金属材料国家重点实验室 北京 100083
Behaviors of Carbides in Grain–Oriented Electrical Steels during Cold Deformation
ZHANG Maohua, MAO Weimin
Department of Materials, State Key Liboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 10083
引用本文:

张茂华 毛卫民. 取向电工钢中碳化物在冷变形过程中的行为[J]. 材料研究学报, 2012, 26(4): 344-348.
. Behaviors of Carbides in Grain–Oriented Electrical Steels during Cold Deformation[J]. Chin J Mater Res, 2012, 26(4): 344-348.

全文: PDF(791 KB)  
摘要: 用场发射扫描电子显微镜观察了取向电工钢在0--68{\%}冷压加工过程中主要组成为碳化物的第二相粒子的分布状态, 统计了不同尺寸粒子面密度的变化。结果表明, 冷变形过程造成了碳化物粒子的碎化和回溶行为。粒子碎化到一定程度后其回溶可能是热力学自发过程。这种碎化和回溶有利于促进二次再结晶过程的顺利进行和锋锐Goss织构的生成, 也有利于促进一次冷轧板的脱碳过程。
关键词 金属材料取向电工钢第二相粒子碳化物回溶    
Abstract:The distribution of second phase particles with carbide as main particles in conventional grain–oriented electrical steels during cold deformation processes was observed by field emission scanning electron microscopy, while the areal density of particles of different sizes were statistically determinedThe results show that cold deformation lead in the crushing and dissolving of carbide particles. The dissolution of carbides particles is a spontaneous process when the size of particles are too small. The increase of small size carbide particles and dissolving during cold rolling process is helpful for secondary recrystallization and the forming of sharp Goss texture, it can also accelerate decarburizing procedure after first–time cold roll and advance the development of producing grain–oriented electrical steels with low temperature hot rolling method.
Key wordsmetallic materials    grain–oriented electrical steel    second–phase particles    carbide    dissolution
收稿日期: 2012-01-15     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金51171019和北京科技大学冶金工程研究院基础理论研究基金YJ2010--005资助项目。

1 M.Muraki, T.Obara, M.Satoh, T.Kan, Control of recrystallization during high–temperature hot–rolling of grain–oriented silicon steel, Journal of Materials Engineering and Performance, 4(4), 413(1995)

2 A.Frank, Jr.Malagari, Method of producing grain oriented silicon steel, U.S.Patent, No.3954521(1976)

3 CHU Shuangjie, QU Biao, DAI Yuanyuan, Influence of some element on the properties of silicon steel, Iron and Steel, 33(11), 68(1998)

(储双杰, 戴元远, 某些元素对硅钢性能的影响, 钢铁,  33(11), 68(1998))

4 J.Languillaume, G.Kapelski, B.Baudelet, Cementite dissolution in heavily cold drawn pearlitic steel wires, Acta Materialia, 45(3), 1201(1997)

5 Yu.Ivanisenko, W.Lojkowski, R.Z.Valiev, H.J.Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Materialia, 51(18), 5555(2003)

6 Y.J.Li, P.Choi, C.Borchers, S.Westerkamp, Atomic–scale mechanisms of deformation–induced cementite decomposition in pearlite, Acta Materialia, 59(10), 3965(2011)

7 LI Yang, MAOWeimin, Precipitation behaviors of second–phase particles in grain–oriented electrical steels during manufacturing processes, Journal of University of Science and Technology Beijing, 33(4), 439(2011)

(李 阳, 毛卫民, 取向电工钢加工过程中第二相粒子的析出行为, 北京科技大学学报,  33(4), 439(2011))

8 K.Gunther, G.Abbruzzese, S.Fortunati, G.Ligi, Recent technology developments in the production of grain–oriented electrical steel, Steel Research international, 76(6), 413(2005)

9 W.M.Mao, Y.Li, W.Guo, Z.G.An, Influence of MnS Particles inside Grains on the Boundary Migration before Secondary Recrystallization of Grain Oriented Electrical Steels, Solid State Phenomena, 160, 247(2010)

10 W.Guo, W.M.Mao, Y.Li, Z.G.An, Influence of intermediate annealing on final Goss texture formation in low temperature reheated Fe–3%Si steel, Materials Science and Engineering A, 528(3), 931(2011)

11 V.G.Gavriljuk, Decomposition of cementite in pearlitic steel due to plastic deformation, Materials Science& Engineering, 345(1), 81(2003)

12 HE zhongzhi, Electrical steels (Beijing, Metallurgical Industry Press) p.609

(何忠治, 电工钢  (北京, 冶金工业出版社, 1997)  p.609)

13 D.Dorner, S.Zaefferer, D,Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Materialia, 55(7), 2519(2007)

14 K.Gunther, G.Abbruzzese, S.Fortunate, Recent technology developments in the production of grain–oriented electrical steel, Steel Research International, 76(6), 413(2005)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.