Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 315-320    
  研究论文 本期目录 | 过刊浏览 |
Cu对9Ni钢强度和低温韧性的影响
欧阳凰生1,2, 潘涛2, 苏航2, 刘洪喜1
1.昆明理工大学材料科学与工程学院 昆明 650093
2.钢铁研究总院结构材料研究所 北京 100081
Effect of Copper on Strength and Cryogenic Toughness of 9Ni Steel
OUYANG Huangsheng1,2,  PAN Tao2,  SU Hang2,  LIU Hongxi1
1.College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2.Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

欧阳凰生 潘涛 苏航 刘洪喜. Cu对9Ni钢强度和低温韧性的影响[J]. 材料研究学报, 2012, 26(3): 315-320.
, , , . Effect of Copper on Strength and Cryogenic Toughness of 9Ni Steel[J]. Chin J Mater Res, 2012, 26(3): 315-320.

全文: PDF(1032 KB)  
摘要: 研究了Cu含量(质量分数)对9Ni钢强度和低温韧性的影响, 并结合显微组织观察和精细结构分析了含铜9Ni钢的强韧化机理。结果表明, 经过淬火+两相区淬火+回火(QLT)处理, Cu含量由0提高到1.5%, 9Ni钢的室温屈服强度和抗拉强度分别提高约150和105 MPa; 随着Cu含量的提高-196℃低温冲击功呈现先增加后降低的趋势,
Cu含量为1.0%时达到最高值157 J, 而所有含铜9Ni钢的冲击功均保持在较高的水平。随着Cu含量的增加, 钢中二次回火马氏体增加而铁素体减少;颗粒或短杆棒状Cu析出物在基体上析出, 组织强化与析出强化共同使钢的强度提高。同时, Cu的加入提高了二次回火马氏体板条边界上的逆转奥氏体含量, 并富集于逆转奥氏体中提高其稳定性, 从而提高了钢的低温韧性。
关键词 金属材料强度低温韧性Cu析出物逆转奥氏体    
Abstract:The effect of copper addition on the strength and cryogenic toughness of 9Ni steel was investigated and the mechanism of strengthening and toughening of Cu-bearing 9Ni steel was discussed in connection with the microstructure characteristics. The results show that the room-temperature yield strength and ultimate tensile strength of the 9Ni steels heat-treated by quenching + lamellarizing + tempering (QLT) process increase by about 150 and 105 MPa respectively when the copper content was increased from 0% to 1.5%. And the impact energy at −196   increased as Cu content increases within 1% but decreased beyond 1%. At the same time, highest impact energy reaches to 157 J for Cu content of 1.0% though the steels with other Cu contents also have high level impact energy. The microstructure observation result reveals that, with increasing Cu, the strength increased due to increasing secondary tempered martensite and Cu particles precipitated finely. On the other hand, Cu addition increases the volume fraction of reversed austenite and improves the stability of formed reversed austenite resulting in cryogenic toughness improvement.
Key wordsmetallic materials    strength    cryogenic toughness    copper precipitates    reversed austenite
收稿日期: 2012-01-09     
ZTFLH: 

TG142

 
基金资助:

国家高技术研究发展计划2007AA03Z506资助项目。

1 ZHANG Futian, LOU Zhifei, Behaviour of microstructure of Ni9 steel under deforming–fracturing, Acta Metall Sin, 30(6), 239(1994)

(张弗天, 楼志飞, Ni9钢的显微组织在变形--断裂过程中的行为, 金属学报, 30(6), 239(1994))

2 YANG Yuehui, CAI Qingwu, WU Huibin, WANG Hua, Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two–phase region heat treatment, Acta Metall Sin, 45(3), 270(2009)

(杨跃辉, 蔡庆伍, 武会宾, 王华, 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响, 金属学报,  45(3), 270(2009))

3 B.Fultz, J.W.Morris, The mechanical stability of precipitated austenite in 9Ni steel, Metall. Trans., 16(12), 2251(1985)

4 Nobuo Nakada, Toru Yamashita, Junaidi Syarif, Toshihiro Tsuchiyama, Setsuo Takaki, Setsuo Takaki, Effect of Cu addition on formation of reversed austenite and hardness in 9%Ni steels, Tetsu–to–Hagane, 89(10), 46(2003)

5 Nobuo Nakada, Junaidi Syarif, Toshihiro Tsuchiyama, Setsuo Takaki, Improvement of strength–ductility balance by copper addition in 9%Ni steels, Materials and Engineering A, 374(1–2), 137(2004)

6 YONG Qilong, The second phase in Iron and steel materials, 1, (Beijing, Metallurgical Industry Press, 2006) p.127

(雍岐龙,  钢铁材料中的第二相, 1 (北京, 冶金工业出版社, 2006) p.127)

7 Chol K.Syn, J.W.Morris, Sungho Jin, Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement, Metall. Mater. Trans., 7(12), 1827(1976)

8 C.W.Marschall, R.F.Hehemann, A.R.Troiano, The characteristics of nine percent nickel low carbon steel, Trans. ASM, 55, 135(1962)

9 B.Fultz, J.I.Kim, Y.H.Kim, H.J.Kim, G.O.Fior, J.W.Morris, The stability of precipitated austenite and the toughness of 9Ni steel, Metall. Trans., 16(12), 2237(1984)

10 E.Rasanen, Decomposition of austenite in Fe–Cu alloys, Scandinavian Journal of Metallurgy, 2(5), 257(1973)

11 Yang Yuehui, Cai Qingwu, Tang Di, Wu Huibin, Precipitation and stability of reversed austenite in 9Ni steel, International Journal of Minerals, Metallurgy, and Materials, 17(5), 587(2010)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.