Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 309-314    
  研究论文 本期目录 | 过刊浏览 |
Mg--9Li--3Al--2.5Sr合金的热变形行为
李俊辰1, 彭晓东1,2,  刘军威1,  杨艳1,  曾利1
1.重庆大学材料科学与工程学院 重庆 400045
2.国家镁合金材料工程技术研究中心 重庆 400044
Deformation Behavior of Alloy Mg–9Li–3Al–2.5Sr at Elevated Temperature
LI Junchen1 , PENG Xiaodong1,2 , LIU Junwei1 , YANG Yan1 , ZENG Li1
1.College of Material Science and Engineering, Chongqing University, Chongqing 400045
2.National Engineering Research Center for Magnesium Alloys, Chongqing 400044
引用本文:

李俊辰 彭晓东 刘军威 杨艳 曾利 . Mg--9Li--3Al--2.5Sr合金的热变形行为[J]. 材料研究学报, 2012, 26(3): 309-314.
. Deformation Behavior of Alloy Mg–9Li–3Al–2.5Sr at Elevated Temperature[J]. Chin J Mater Res, 2012, 26(3): 309-314.

全文: PDF(1145 KB)  
摘要: 使用Gleeble--1500D型热模拟试验机, 对挤压态Mg--9Li--3Al--2.5Sr合金进行热力模拟实验(变形温度为200--350℃, 应变速率为0.001--1 s-1), 分析了材料的流变应力与变形温度和应变速率的关系, 建立了该合金热变形过程中的本构方程, 计算了该合金的热加工图, 并结合显微组织观察对加工图进行了分析。结果表明: 材料的流变应力随着应变速率的增加而增加, 随着温度的升高而下降;用双曲正弦函数关系式能很好地描述材料在热变形过程中的稳态流变应力;对热加工图的分析结果表明, 在实验参数范围内材料的最佳理论热加工区为260--300℃和0.01--1 s-1。材料的超塑性加工区为340--350℃和0.003--0.01 s-1
关键词 金属材料镁合金热变形行为本构方程热加工图    
Abstract:The uniaxial hot compression test with Gleeble–1500D thermal simulator had performed on Mg–9Li–3Al–2.5Sr alloy at 200–350℃ and strain rates of 0.001–1 s−1. The correlation between the flow stress and the temperature and strain rates were analyzed, the constitutive equation of the alloy at elevated temperature was established, and the hot processing map of the alloy was also calculated and investigated by observing the microstructure. The results show that the flow stress becomes higher with increase of strain rates at constant temperature, and lower with increase of deformation temperature at constant strain rate. The steady flow stress of the alloy deformed at elevated temperature can be well described by the hyperbolic sine constitutive equation. The result of hot processing map shows that the optimal hot working parameters for the alloy Mg–9Li–3Al–2.5Sr is at 260–300℃ and strain of 0.01–1 s−1, and the super–plastic deformation domain is at 340–350℃ and strain of 0.003–0.01 s−1.
Key wordsmetallic materials, magnesium alloy    hot deformation behavior    constitutive equation    processing map
收稿日期: 2012-04-11     
ZTFLH: 

TG146

 
基金资助:

国家重点基础研究发展计划项目2007CB613702和科技部国际合作项目2010DFR50010资助。

1 Y.W.Kim, D.H.Kim, H.L.Lee, C.P.Hong, WidmanstAtten type solidification in squeeze casting of Mg–Li–Al alloy, Scripta Materialia, 38(6), 923(1998)

2 W.A.Counts, M.Friak, D.Raabe, J.Neugebauer, Using ab initio calculations in designing bcc Mg–Li alloys for ultra–lightweight applications, Acta Materialia, 57, 69(2009)

3 C.W.Yang, T.S.Lui, L.H.Chen, H.E.Hang, Tensile mechanical properties and failure behaviors with the ductile to brittle transition of the α + β type Mg–Li–Al–Zn alloy, Scripta Materialia, 61, 1141(2009)

4 H.Y.Wu, Z.W.Gao, J.Y.Lin, C.H.Chiu, Effects of minor scandium addition on the properties of Mg–Li–Al alloy, Journal of Alloys and Compounds, 474, 158(2009)

5 T.Liu, S.D.Wu, S.X.Li, P.J.Li, Microstructure evolution of Mg–14%Li–1%Al alloy during the process of equal channel angular pressing, Materials Science and Engineering

A, 460, 499(2007)

6 Y.Z.Lv, X.Yan, D.X.Cao, The electrochemical behaviors of Mg, Mg–Li–Al–Ce and Mg–Li–Al–Ce–Y in sodium chloride solution, Journal of Power Sources, 196, 8809(2011)

7 Y.Yang, X.P.Peng, Q.Y.Wei, W.D.Xie, Z.H.Su, Influence of Sr on microstructure and mechanical properties of Mg–9Li–3Al alloy, ICMAT & IUMRS–ICA 2009

8 ZHOU Wei, PENG Xiaodong, YANG Yan, LIU Huatang, Influence of Sr on microstructures and high temperature mechanical properties of Mg–9Li–3Al alloys, Foundry, 60(5), 489(2011)

(周 伟, 彭晓东, 杨 艳, 刘华堂, Sr对Mg--9Li--3Al合金显微组织及高温力学性能的影响, 铸造,  60(5), 489(2011))

9 H.Zhang, N.P.Jin, J.H.Chen, Hot deformation behavior of Al–Zn–Mg–Cu–Zr aluminum alloys during compression at elevated temperature, Nonferrous. Met., 21, 437(2011)

10 H.Z.Li, H.J.Wang, X.P.Liang, H.T.Liu, X.M.Zhang, Hot deformation and processing map of 2519A aluminum alloy, Materials Science and Engineering A, 528, 1548(2011)

11 X.D.Hung, H.Zhang, Y.Han, W.X.Wu, J.H.Chen, Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature, Materials Science and Engineering A, 527, 485(2010)

12 HUANG Shiquan, YI Youping, LI Pengchuan, High temperature deformation behavior of 23Co13Ni11Cr3Mo ultrahigh strength steel, Chinese Journal of Materials Research, 25(5), 284(2011)

(黄始全, 易幼平, 李蓬川, 23Co13Ni11Cr3Mo超刚强纲的高温变形行为, 材料研究学报,  25(5), 284(2011))

13 ZHOU Dening, CHEN Zhiyu, HAN Ying, FAN Guangwei, ZHANG Wei, Study on constitutive models of 22Cr–5Ni–3Mo–N high alloy steel for high temperature deformation, Chinese Journal of Materials Research, 25(6), 591(2011)

(邹德宁, 陈治毓, 韩 英, 范光伟, 张 威, 22Cr--5Ni--3Mo--N高合金钢高温变形本构模型研究, 材料研究学报,  25(6), 591(2011))

14 Y.F Han, W.D.Zeng, Y.L.Qi, Y.Q.Zhao, Optimization of forging process parameters of Ti600 alloy by using processing map, Materials Science and Engineering A, 529,

393(2011)

15 Y.V.R.K, Prasad, K.P.Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability, Materials Science and Engineering A, 487, 316(2008)

16 D.H.Li, Y.Yang, T.Xua, H.G.Zheng, Q.S.Zhu, Q.M.Zhang, Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy, Materials Science and Engineering A, 527, 3529(2010)

17 L.Jiang, J.J.Jonas, R.K.Mishra, A.A.Luo, A.K.Sachdev, S.Godef, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths, Acta Materialia, 55(1), 3899(2007)

18 S.Anbuselvan, S.Ramanathan, Hot deformation and processing maps of extruded ZE41A magnesium alloy, Materials and Design, 31, 2319(2010)

19 M.L.Ma, L.Q.He, X.G.Li, Y.J.Li, K.Zhang, Hot workability of Mg–9Y–1MM–0.6Zr alloy, Journal of Rare Earths, 29(5), 460(2011)

20 M.M.Avedesian, H.Baker, ASM Specialty Hand–book–Magnesium and Magnesium Alloys (OH, ASM International, 1999) p.258

21 P.Wang, L.H.Wu, S.K.Guan, Effect of initial microstructure on superplastic deformation of AZ70 magnesium alloy, Nonferrous Met., 20, 527(2010)

22 R.Panicker, A.H.Chokshi, R.K.Mishra, Microstructure evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy, Acta Materials, 57, 3683(2009)

23 H.Watanabe, H.Tsutsui, T.Mukai, M.Konzu, S.Tanbe, K.Higashi, Deformation mechanism in a coarse–grained Mg–Al–Zn alloy at elevated temperatures, International Journal of Plasticity, 17, 387(2011)

24 S.Tanabe, K.Higashi, The superplastic property of the as–extruded Mg–8Li alloy, Materials Science and Engineering A, 527, 3284(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.