Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (3): 255-260    
  研究论文 本期目录 | 过刊浏览 |
快速热退火对原子层淀积铂纳米颗粒的影响
陈红兵, 朱宝, 陈笋, 孙清清, 丁士进, 张卫
专用集成电路与系统国家重点实验室复旦大学微电子研究院 上海 200433
Effects of Rapid Thermal Annealing on Atomic–layer–deposition Pt Nanoparticles
CHEN Hongbing, ZHU Bao, CHEN Sun, SUN Qingqing, DING Shijin, ZHANG Wei
引用本文:

陈红兵 朱宝 陈笋 孙清清 丁士进 张卫. 快速热退火对原子层淀积铂纳米颗粒的影响[J]. 材料研究学报, 2012, 26(3): 255-260.
, , , , , . Effects of Rapid Thermal Annealing on Atomic–layer–deposition Pt Nanoparticles[J]. Chin J Mater Res, 2012, 26(3): 255-260.

全文: PDF(1041 KB)  
摘要: 以(MeCp)Pt(CH3)3和O2为反应源, 采用原子层淀积(ALD)技术在Al2O3衬底上制备Pt纳米颗粒, 研究了在氮气中快速热退火对Pt纳米颗粒的特性的影响。结果表明, 随着退火温度从700℃升高到900℃, Pt纳米颗粒尺寸逐渐增大, 颗粒之间分离愈加清晰, 形貌趋向球形, 但颗粒密度稍有降低。随着在800℃退火时间从15 s增加到60 s, Pt纳米颗粒的尺寸逐渐增大, 尺寸分布变得更加弥散, 颗粒的密度逐渐降低;其中退火15 s后的Pt纳米颗粒密度高(9.29×1011cm-2)、分布均匀、分离清晰。900℃退火后在Pt纳米颗粒中出现部分氧化态的Pt原子, 其原因可能是在高温下Pt纳米颗粒与Al2O3薄膜之间发生了界面化学反应。
关键词 金属材料Pt纳米颗粒原子层淀积快速热退火    
Abstract:Pt nanoparticles were prepared on Al2O3 films by atomic layer deposition using (MeCp)Pt(CH3)3 and O2 as precursors, and the effect of rapid thermal annealing (RTA) on the characteristics of Pt nanoparticles was investigated. The results show that as the annealing temperature rises from 700 to 900℃, Pt nanoparticles exhibit the increase of the dimensions and self-separation, a tendency to spherical growth, and a slight decrease in particle density. With increasing the annealing time from 15 s to 60 s at 800 !, Pt nanoparticles grow big gradually together with increscent dimension dispersion and a decreasing density. Therefore, it is concluded that the annealing at 800℃ for 15 s can achieve high density (9.29×1011cm−2), uniform and well–separated Pt nanoparticles. Moreover, when the annealing temperature is increased to 900℃, some Pt atoms are oxidized, which is likely due to the interfacial reaction between Pt and Al2O3.
Key wordsmetallic materials    platinum nanoparticles    atomic layer deposition    rapid thermal annealing
收稿日期: 2012-02-08     
ZTFLH: 

TG115

 
基金资助:

国家自然科学基金61076076, 02国家科技重大专项2009ZX02302--002和新世纪优秀人才支持计划NCET--08--0127 资助项目。

1 Z.T.Liu, C.Lee, V Narayanan, G.Pei, E.C.Kan, Metal nanocrystal memories–part Π: electrical characteristics, IEEE Trans. Electron Devices, 49(9), 1606(2002)

2 T.H.Hou, C.Lee, V.Narayanan, U.Ganguly, E.C.Kan, Design optimization of metal nanocrystal memory–part  II : gate-stack engineering, IEEE Trans. Electron Devices, 53(12), 3095(2006)

3 M.Takata, S.Kondoh, T.Sakaguchi, H.Cho, J.C.Shim, H.Kurino, M.Koyanagi, New non-volatile memory with extremely high-density metal nano-dots, Int. Elec. Dev. Meet Tech. Dig., 553(2003)

4 C.Lee, A.Gorur-Seetharam, E.C.Kan, Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals, Int. Elec. Dev. Meet Tech. Dig., 557(2003)

5 J.J.Lee, D.L.Kwong. Metal nanocrystal memory with high-k tunneling barrier for improved data retention, IEEE Trans. Electron Devices, 52(4), 507(2005)

6 J.J.Lee, Y Harada, J.W.Pyun, D.L.Kwong, Nickle nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications, Appl. Phys. Lett., 86, 103505(2005)

7 S.K.Samanta, W.J.Yoo, G.Samudra, E.S.Tok, L.K.Bera, N.Balasubramanian, Tungsten nanocrystals embedded in high-k materials for memory application, Appl. Phys. Lett., 87, 113110(2005)

8 ZHANG Min, DING Shijin, CHEN Wei, ZHANG Wei, Progress in research and development of metal nanocrystal memories, Microelectronics, 37(3), 369(2007)

(张 敏, 丁士进, 陈 玮, 张 卫, 金属纳米晶快闪存储器研究进展, 微电子学,  37(3), 369(2007))

9 S.Novak, B.Lee, X.Y.Yang, V.Misra, Platinum nanoparticles grown by atomic layer deposition for charge storage memory applications, J. Electronchem. Soc., 157(6), H589(2010)

10 P.K.Singh, G.Bisht, K.Auluck, M.Sivatheja, R.Hofmann, K.K.Singh, S. Mahapatra, Performance and reliability study of single-layer and dual-layer platinum nanocrystal Flash memory devices under NAND operation, IEEE Trans. Electron Devices, 57, 2029(2010)

11 C.Lee, J.Meteer, V.Narayanan, E.C Kan, Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications, J. Electro. Matt., 34(1), 1(2005)

12 H.Kim, S.Woo, H.Kim, S.Bang, Y.Kim, D.Choi, H.Jeon, Pt nanocrystals embedded in remote plasma atomic-layerdeposited HfO2 for nonvolatile memory devices, Electrochem. Solid-State Lett., 12(4), H92(2009)

13 M.Yun, D.W.Mueller, M.Hossain, V.Misra, S.Gangopadhyay, Sub-2 nm size-tunable high-density Pt nanoparticle embedded nonvolatile memory, IEEE Electron Device Lett., 30, 1362(2009)

14 R.C.Jeff, Jr, M.Yun, B.Ramalingam, B.Lee, V.Misra, G.Triplett, S.Ganopadhyay, Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based nonvolatile memory, Appl. Phys. Lett., 99, 072104(2011)

15 S.T.Christensen, J.W.Elam, B.Lee, Z.X.Feng, M.J.Bedzvk, M.C.Hersam, Nanoscale structure and morphology of atomic layer deposition platinum on SrTiO3(001), Chem. Mater., 21, 516(2009)

16 M.Zhang, W.Chen, S.J.Ding, X.P.Wang, D.W.Zhang, L.K.Wang, Investigation of atomic-layer-deposition ruthenium nanocrystal growth on SiO2 and Al2O3 films, J. Vac. Sci. Technol. A, 25(4), 775(2007)

17 T.Aaltonen, M.Ritala, T.Sajavaara, J.Keinonen, M.Leskela, Atomic layer deposition of platinum thin films, Chem. Mater., 15, 1924(2003)

18 T.Aaltonen, A.Rahtu, M.Rital, M.Leskela, Reaction mechanism studies on atomic layer deposition of ruthenium and platinum, Electrochem. Solid-State. Lett., 6(9), C130(2003)

19 C.Lee, U.Ganguly, V.Narayanan, T.H.Hou, J.Kim, E.C.Kan, Asymemetric electric field enhancement in naocrystal memories, IEEE Electron Device Lett., 26(12), 879(2005)

20 M.She, T.J.King, Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance, IEEE Trans. Electron Devices, 50(9), 1934(2003)

21 H.Tsuji, N.Arai, T.Matsumoto, K.Ueno, Y.Gotoh, K.Adachi, H.Kotaki, J.Ishikawa, Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature, Appl. Surf. Sci., 239(1-4), 132(2004)

22 NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, National Institute of Standards and Technology, Gaithersburg (2003)(http://www.srdata.nist.com/xps/)

23 D.L.Hoang, S.A.-F.Farrage, J.Radnik, M.-M.Pohl, M.Schneider, H.Lieske, A.Martin, A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane, Applied Catalysis: Gemeral, 333, 67(2007)

24 W.Chen, M.Zhang, D.W.Zhang, S.J.Ding, J.J.Tan, M.Xu, X.P.Qu, L.K.Wang, Growth of high-density Ruand RuO2-composite nanodots on atomic-layer-deposited Al2O3 film, Appl. Surf. Sci., 253(8), 4045(2007)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.