Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 199-205    
  研究论文 本期目录 | 过刊浏览 |
低碳Q690qENH高强桥梁钢的动态再结晶行为
陈俊1,  唐帅1,   周砚磊1,   刘振宇1,  王国栋1, 杨颖2,  陈军平2 
1.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.鞍钢股份有限公司 鞍山 114021
Dynamic Recrystallization Behaviors of Low Carbon Q690qENH High–strength Bridge Steels
CHEN Jun1,  TANG Shuai1,   ZHOU Yanlei1,   LIU Zhenyu1,   WANG Guodong1,   YANG Ying2,   CHEN Junping2
1.The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2.ANGANG Steel Company Limited, Anshan 114021
引用本文:

陈俊 唐帅 周砚磊 刘振宇 王国栋 杨颖 陈军平. 低碳Q690qENH高强桥梁钢的动态再结晶行为[J]. 材料研究学报, 2012, 26(2): 199-205.
. Dynamic Recrystallization Behaviors of Low Carbon Q690qENH High–strength Bridge Steels[J]. Chin J Mater Res, 2012, 26(2): 199-205.

全文: PDF(1266 KB)  
摘要: 对低碳Q690qENH高强桥梁钢进行压缩实验, 研究了动态再结晶行为。结果表明, 在低碳Q690qENH高强桥梁钢的轧制热变形过程中, 其软化以动态回复为主, 只在0.1 s-1和0.2 s-1低应变速率下才发生明显的动态再结晶。通过计算将应力因子α修正为0.0099 MPa-1, 得到了实验钢的动态再结晶激活能, 建立了动态再结晶动力学模型。采用P--M--K法确定了εcp约为0.72, 且峰值应变与Z/A满足幂函数关系, 建立了动态再结晶临界应变模型, 其计算值与热变形中的显微组织演变规律一致。研究了温度对动态再结晶过程中界面迁移速率的影响规律。
关键词 金属材料动态再结晶热模拟激活能动力学临界应变显微组织    
Abstract:The dynamic recrystallization behaviors of low carbon Q690qENH high–strength bridge steel were investigated by hot compression deformation using MMS–300 thermo–simulation machine. The results show the softening of low carbon Q690qENH high-strength bridge steel is mainly controlled by dynamic recovery during hot rolling deformation and the dynamic recrystallization occurs obviously at low strain rates of 0.1 s−1 and 0.2 s−1. The stress factor was modified as 0.0099 MPa−1, the dynamic recrystallization activation energies were gained, and the dynamic recrystallization kinetics model was established. The expression of εc=0.72εp was determined using P–M–K method. Correlations between peak strain and Z/A are power function, and dynamic recrystallization critical strain model was established calculation values of which are good agreement with evolution of microstructure during hot deformation. Effects of temperature on migration–rate of interface were also investigated during dynamic recrystallization.
Key wordsmetallic materials    dynamic recrystallization    thermo-simulation    activation energies    kinetics    critical strain    microstructure
收稿日期: 2011-08-31     
ZTFLH: 

TG142

 
基金资助:

中央高校基本科研业务费专项基金N110607003、N100507002资助项目。

1 WANG Lei, GAO Cairu, WANG Yanfeng, DU Linxiu, ZHAO Dewen, LIU Xianghua, Development of bridge steels in China, Materials for Mechanical Engineering, 32(5), 1(2008)

(王  磊, 高彩茹, 王彦锋, 杜林秀, 赵德文, 刘相华, 我国桥梁钢的发展历程及展望, 机械工程材料,  32(5), 1(2008))

2 WEI Jie, TANG Guangbo, LIU Zhengdong, Hot deformation and dynamic recrystallization models of C–Mn steel, Journal of Iron and Steel Research, 20(3), 31(2008)

(魏 洁, 唐广波, 刘正东, 碳锰钢热变形行为及动态再结晶模型, 钢铁研究学报, 20(3), 31(2008))

3 S.F.Medina, C.A.Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Materialia,

44(1), 137(1996)

4 MA Bo, PENG Yan, LIU Yunfei, JIA Bin, Dynamic recrystallization kinetics model of low-alloy steel Q345B, Transactions of Materials and Heat Treatment, 31(4), 141(2010)

(马 博, 彭 艳, 刘云飞, 贾 斌, 低合金钢Q345B动态再结晶动力学模型, 材料热处理学报, 31(4), 141(2010))

5 MA Liqiang, YUAN Xiangqian, LIU Zhenyu, ZHANG Pijun, JIAO Sihai, WU Di, WANG Guodong, Study on dynamic recrystallization of Nb-microalloyed steels, Journal of Iron and Steel Research, 18(9), 47(2006)

(马立强, 袁向前, 刘振宇, 张丕军, 焦四海, 吴 迪, 王国栋, 铌微合金钢动态再结晶的规律, 钢铁研究学报, 18(9), 47(2006))

6 CHEN Liqing, ZHAO Yang, XU Qiuxiang, LIU Xianghua, Dynamic recrystallization and precipitation behaviors of a kind of low carbon V-microalloyed steel, ActaMetallurgica Sinica, 46(10), 1215(2010)

(陈礼清, 赵 阳, 徐香秋, 刘相华, 一种低碳钒微合金钢的动态再结晶与析出行为, 金属学报, 46(10), 1215(2010))

7 A.I. Fern´andez, P.Uranga, B.L´opez, J.M.Rodriguez-Ibabe, Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steel, Materials Science and Engineering, 361(1-2), 367(2003)

8 F.Siciliano, Jr, J.J.Jonas, Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply–alloyed Cr–Mo, and plain C–Mn steels, Metallurgical and Materials Transaction Trans.A, 31A(2), 511(2000)

9 C.M.Sellars, W.J.M.Tegart, On the mechanism of hot deformation, Acta Metallurgica, 14(9), 1136(1996)

10 H.J.McQueen, N.D.Ryan, Constitutive analysis in hot working, Materials Science and Engineering A, 322(1-2), 43(2002)

11 XIE Zhanglong, LIU Zhenyu, WANG Guodong, Mathematical modeling for dynamic recrystallization behavior of low-carbon 9Ni steels, Journal of Northeastern University(Natural Science), 31(1), 51(2010)

(谢章龙, 刘振宇, 王国栋, 低碳9Ni钢的动态再结晶数学模型, 东北大学学报(自然科学版), 31(1), 51(2010))

12 WU Jinbin, LIU Guoquan, WANG Chengyang, XU Lei, WANG Hao, Dynamic recrystallization kinetics and related influence factors of vanadium-nitride microalloyed steel during hot compressive deformation, Materials Science and Technology, 19(1), 85(2011)

(吴晋彬, 刘国权, 王承阳, 许 磊, 王 浩, 钒氮微合金钢动态再结晶动力学及影响因素, 材料科学与工艺, 19(1), 85(2011))

13 N.D.Ryan, H.J.McQueen, Dynamic softening mechanisms in 304 austenitic stainless steel, Can Metall Q, 29(2), 147(1990)

14 M.Glowacki, P.Kuziak, M.Pietrzyk, Modeling of heat transfer, plastic flow and microstructural evolution during shape rolling, Journal of materials Processing Technology, 53(122), 159(1995)

15 K.Karhausen, R.Kopp, Numerical simulation method for designing thermomechanical treatments, illustrated by bar rolling, Scandinavian Journal of Metallurgy, 20(6), 351(1991)

16 M.EI.Wahabi, J.M.Cabrera, Prsdo J M, Hot working of two AISI 304 steels: a comparative study, Materials Science Engineering A, 343, 116(2003)

17 C.X.Yue, L.W.Zhang, S.L.Liao, J.B.Pei, H.J.Gao, Y.W.Jia, X.J.Lian, Research on the dynamic recrystallization behavior of GCr15 steel, Materials Science and Engineering A, 499(1-2), 177(2009)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.