Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 191-198    
  研究论文 本期目录 | 过刊浏览 |
混杂功能化碳纳米管/聚氨酯复合材料的制备及性能
朱朦琪1, 肖潭2, 郑伟玲1, 卫保娟1, 王堉2, 吴萍1
1.汕头大学理学院 汕头 515063
2.中山大学工学院 广州 510006
Preparation and Properties of Hybrid Functionalized Carbon Nanotube Polyurethane Composites
ZHU Mengqi1,  XIAO Tan2, ZHENG Weiling1,  WEI Baojuan1,  WANG Yu2,  WU Ping1
1. Science College, Shantou University, Shantou 515063
2. School of Engineering, Sun Yat–sen University, Guangzhou 510006
引用本文:

朱朦琪 肖潭 郑伟玲 卫保娟 吴萍. 混杂功能化碳纳米管/聚氨酯复合材料的制备及性能[J]. 材料研究学报, 2012, 26(2): 191-198.
, , , , . Preparation and Properties of Hybrid Functionalized Carbon Nanotube Polyurethane Composites[J]. Chin J Mater Res, 2012, 26(2): 191-198.

全文: PDF(1300 KB)  
摘要: 以多壁碳纳米管(MWNTs)为原料, 采用不同改性方法制得了羧化碳纳米管(MWNTs--COOH)、共价功能化碳纳米管(MWNTs--NH2)、非共价功能化碳纳米管(MWNTs--PPA)和混杂功能化碳纳米管(MWNTs--COOH--PPA), 将这4种改性碳纳米管按不同质量分数分别加入聚氨酯(PU)中制备了复合材料。使用万能材料试验机和热失重分析仪测试了复合材料的力学和热学性能, 研究了碳纳米管对复合材料性能的影响。结果表明:通过在碳纳米管表面接枝少量的共价官能团防止非共价包覆的剥离, 混杂功能化方法既能够改善碳纳米管在基体中的分散性, 又能够保持其与基体界面间结合力, 复合材料增强效果最明显。耐热性良好的碳纳米管的添加提高了PU基体的热分解温度, 提高程度由于其功能化方式的不同而稍有差别。MWNTs--COOH--PPA/PU复合材料的力学性能最优, 当碳纳米管含量(质量分数, 下同)为0.3%时,  其拉伸强度与纯PU相比提高104%, 其热分解温度与MWNTs--COOH/PU相当, 优于纯PU, 但低于MWNTs--NH2/PU和MWNTs--PPA/PU。
关键词 复合材料碳纳米管混杂功能化聚氨酯力学性能热学性能    
Abstract:Multi–walled carbon nanotubes (MWNTs) were modified with different approaches to produce carboxylated carbon nanotubes (MWNTs–COOH), covalently functionalized carbon nanotubes (MWNTs–NH2), noncovalently functionalized carbon nanotubes (MWNTs–PPA), and hybrid functionalized carbon nanotubes (MWNTs–COOH–PPA), respectively. These functionalized MWNTs were respectively incorporated into polyurethane (PU) with various mass fraction to prepare four kinds of PU composite. The mechanical and thermal properties of these composites were tested by means of universal testing machine and thermal gravimetric analyzer. The results show that by grafting few functional groups onto the MWNT surface to prevent the detachment of noncovalent wrapping, hybrid functionalization not only improves the dispersion of MWNTs in the matrix, but also retains the interfacial interactions between them. Therefore the best reinforcement is achieved. Addition of heat–resistant MWNTs increases the thermal deposition temperature of PU matrix, and the increase amount slightly varies with functionalization
approaches. MWNTs–COOH–PPA/PU has the best mechanical performance. Its tensile strength increased 104% compared with pure PU at 0.3% MWNTs loading. Its thermal decomposition temperature is identical to that of MWNTs–COOH/PU, better than that of pure PU, but lower than that of MWNTs–NH2/PU and MWNTs–PPA/PU.
Key wordscomposites    carbon nanotubes    hybrid functionalization    polyurethane    mechanical properties    thermal properties
收稿日期: 2011-08-30     
ZTFLH: 

TB332

 
基金资助:

国家自然科学基金10772102、广东省自然科学基金07008103和9152841101000001、中山大学后备重点课题1132249以及中山大学百人计划(3181304)资助项目。

1 M.S.Dresselhaus, G.Dresselhaus, J.C.Charlier, E.Hern´andez, Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. R. Soc. Lond. A, 362, 2065(2004)

2 T.W.Odom, J.L.Huang, P.Kim, C.M.Liebel, Atomic structure and electronic properties of single–walled carbon nanotubes, Nature, 391, 62(1998)

3 A.V.Desai, M.A.Haque, Mechanics of the interface for carbon nanotube–polymer composites, Thin–walled Structures, 43, 1787(2005)

4 B.Safadi, R.Andrews, E.A.Grulke, Multiwalled carbon nanotube polymer compositesSynthesis and characterization of thin films, J. Appl. Polym. Sci., 84, 2660(2002)

5 C.Velasco–Santos, A.L.Martinez–Hernandez, F.T.Fisher, R.Ruoff, V.M.Castano, Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization, Chem. Mater., 15, 4470(2003)

6 M.J.O’Connell, P.Boul, L.M.Ericson, C.Huffman, Y.H.Wang, E.Haroz, C.Kuper, J.Tour, K.D.Ausman, R.E.Smalley, Reversible water–solublization of single–walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 342, 265(2001)

7 Y.Chen, R.C.Haddon, S.Fang, A.M.Rao, P.C.Eklund, W.H.Lee, E.C.Dickey, E.A.Grulke, R.E.Smalley, Chemical attachment of organic functional groups to single–walled carbon nanotubes material, J. Mater. Res., 13, 2423(1998)

8 A.Eitan, K.Y.Jiang, D.Dukes, R.Andrews, L.S.Schadler, Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites, Chem. Mater., 15, 3198(2003)

9 J.K.Lim, W.S.Yun, M.H.Yoon, S.K.Lee, C.H.Kim, K.Kim, S.K.Kim, Selective thiolation of single–walled carbon nanotubes, Synth. Met., 139, 521 (2003)

10 LI Bo, LIAN Yongfu, SHI Zujin, GU Zhennan, Chemical modification of single–wall carbon nanotube, Chemical Journal of Chinese Universities, 21, 1633(2000)

(李 博, 廉永福, 施祖进, 顾振南, 单层碳纳米管的化学修饰, 高等学校化学学报, 21, 1633(2000))

11 Y.Liu, A.Star, K.Grant, L.Ridvan, J.F.Stoddart, D.W.Steuerman, M.R.Diehl, A. Boukai, J.R. Heath, Noncovalent side–wall functionalization of single–walled carbon nanotubes, Macromolecules, 36, 553(2003)

12 A.Carrillo, J.A.Swartz, J.M.Gamba, R.S.Kane, Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett., 3, 1437(2003)

13 J.Chen, M.A.Hamon, H.Hu, Y.S.Chen, A.M.Rao, P.C.Eklund, R.C.Haddon, Solution properties of single–walled carbon nanotubes, Science, 282, 95(1998)

14 M.A.Hamon, J.Chen, H.Hu, Adv. Mater., 11, 835(1999)

15 S.A.Curran, P.M.Ajayan, W.J.Blau, Composite from PmPV and carbon nanotubes: A novel material for molecular optoelectronics, Adv. Mater., 10, 1091(1998)

16 J.Q.Liu, T.Xiao, K.Liao, P.Wu, Interfacial design of carbon nanotube polymer composites: Hybrid system of noncovalent and covalent functionalizations, Nanotechnology, 18, 165701(2007)

17 XIONG Huifang, LIU Juqing, XIAO Tian, in Proceedings of the 15th National Conference on Composite Materials, Computer simulation of hybrid functionalized carbon nanotube polymer composites, edited by S.Y.Du (Beijing, National Defense Press, 2008) p.53

(熊慧芳, 刘举庆, 肖 潭, 第十五届全国复合材料学术会议论文集,  混杂功能化碳纳米管聚合物复合材料计算机模拟, edited by 杜善义 (北京, 国防工业出版社, 2008) p.53)

18 ZHENG Weiling, XIAO Tian, ZHU Mengqi, WU Ping, Preparation and dispersivity of multiwalled carbon nanotubes coated by Poly(phenylacetylene), Acta Phys. Chim. Sin., 25, 2373(2009)

(郑伟玲, 肖 潭, 朱朦琪, 吴 萍, 聚苯乙炔包覆多壁碳纳米管的制备及其分散性, 物理化学学报, 25, 2373(2009))

19 N.G.Sahoo, Y.C.Jung, H.J.Yoo, J.W.Cho, Influence of carbon nanotubes and polypyriole on the thermal, mechanical and electroactive shape–memory properties of polyurethane nanocomposites, Composites Science and Technology, 67, 1920(2007)

20 W.Chen, X.M.Tao, Y.Y.Liu, Carbon nanotube–reinforced polyurethane composite fibers, Composites Science and Technology, 66, 3029(2006)

21 YU Guanghui, ZHENG Fandi, Study on electrical and mechanical properties of polyurethane/CNTs composite, Engineering Plastics Application, 33, 11(2005)

(喻光辉, 曾繁涤, 聚氨酯/碳纳米管复合材料力学及电性能研究, 工程塑料应用, 33, 11(2005))

22 YANG Yu, ZHAO Xing, ZHANG Qinghua, Preparation and properties of TDI modified carbon nanotubes/polyurethane composites, New Chemical Materials, 37, 53(2009)

(杨  昱, 赵  昕, 张清华, 表面接枝TDI碳纳米管/聚氨酯复合材料的研制, 化工新型材料, 37, 53(2009))

23 J.W.Xiong, Z.Zheng, X.M.Qin, M.Li, H.Q.Li, X.L.Wang, The thermal and mechanical properties of a polyurethane/multi–walled carbon nanotube composite, Carbon, 44, 2701(2006)

24 WU Suxia, LV Zhiping, WAN Zhaorong, DOU Tao, The preparation and characterization of PU/CNTs composites, Polyurethane Industry, 22, 9(2007)

(吴素霞, 吕志平, 万兆荣, 窦 涛, 聚氨酯/碳纳米管复合材料的制备与表征, 聚氨酯工业, 22, 9(2007))

25 CAO Chunhua, LI Jialin, JIA Zhijie, CHEN Zhenghua, Decoration of carbon nanotubes with amine groups by reacting with diamine, New Carbon Materials, 19, 137(2004)

(曹春华, 李家麟, 贾志杰, 陈正华, 用二胺在碳纳米管上引入胺基团的研究, 新型炭材料, 19, 137(2004))

26 XU Guocai, ZHANG Lide, Nanocomposites (Beijing, Chemical Industrial Press, 2001) p.249

(徐国财, 张立德,  纳米复合材料, (北京, 化学工业出版社, 2001) p.249)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.