Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 119-124    
  研究论文 本期目录 | 过刊浏览 |
考虑二维ES势垒的薄膜生长动力学Monte Carlo模型
朱祎国,荣海波
大连理工大学工业装备结构分析国家重点实验室 大连理工大学工程力学系 大连 116024
Kinetic Monte Carlo Simulation of Thin Film Growth Including Two--dimensional Ehrlich--Schwoebel Barrier
ZHU Yiguo,RONG Haibo
State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023
引用本文:

朱祎国 荣海波. 考虑二维ES势垒的薄膜生长动力学Monte Carlo模型[J]. 材料研究学报, 2012, 26(2): 119-124.
. Kinetic Monte Carlo Simulation of Thin Film Growth Including Two--dimensional Ehrlich--Schwoebel Barrier[J]. Chin J Mater Res, 2012, 26(2): 119-124.

全文: PDF(814 KB)  
摘要: 考虑了原子在发生层间扩散过程中Ehrlich--Schwoebel势垒的作用,构造了四边形基底表面上薄膜三维生长的动力学Monte Carlo(MC)模型。在这个模型中, 原子表面运动的三种动力学过程包括沉积、扩散和脱附过程, 它们相互影响又相互独立, 依据各自的概率发生。在不同生长条件下, 模拟出薄膜的三种生长模式以及相应的薄膜三维生长形貌图。对计算结果的分析表明, ES势垒和在ES势垒作用下基底温度和沉积速率等因素对薄膜的三维生长模式有重要影响。
关键词 材料科学基础学科薄膜生长动力学Monte Carlo模型二维ES势垒形貌    
Abstract:A kinetic Monte Carlo model describing the three–dimensional thin film growth on square lattice substrates was presented, in which the two–dimensional Ehrlich–Schwoebel barrier for an adatom to diffuse down a surface step was taken into account. Three principle dynamic processes, namely deposition, diffusion and re–evaporation were included in the description of surface motion of the adatoms. It is considered that these three dynamic processes are interact on each other and will occur randomly according to their rates. Three growth modes and corresponding island morphologies under different growth conditions were simulated. By analysing the simulate results, It is educed that the important influence of Ehrlich–Schwoebel Barrier on surface morphology, and under the action of Ehrlich–Schwoebel Barrier, the temperature of substrate and deposition rate also play an important role in thin film growth modes.
Key wordsfoundational discipline in materials science    thin film growth    Kinetic Monte Carlo model    two–dimensional ehrlich–schwoebel barrier    morphology
收稿日期: 2010-04-19     
ZTFLH: 

O484

 
基金资助:

国家重点基础研究发展计划2005CB321704, 国家自然科学基金10925209和中央高校基本科研业务费专项资金DUT10LK42资助项目。

1 WANG Enge, Atomic–scale study of kinetics in film growth(I), Progress in Physics, 23(1), 1(2003)

(王恩哥, 薄膜生长中的表面动力学(I), 物理学进展, 23(1), 1(2003))

2 MAO Huibing, JING Weiping, YU Jianguo, WANG Jiqing, WANG Li, DAI Ning, Kinetic Monte Carlo simulation of the epitaxial growth mechanism on the vicinal surface, Acta Physica Sinica, 5510), 5435(2006)

(毛惠兵, 景为平, 俞建国, 王基庆, 王 力, 戴 宁, 邻晶面外延生长机制的动力学Monte Carlo模拟, 物理学报, 5510), 5435(2006))

3 G.Enrlich, F.G.Hudda, Atomic view of surface self–diffusion: Tungsten on tungsten, J. Chem. Phys., 44, 1039(1966)

4 R.L.Schwoelbel, E.J.Shipesy, Step motion on crystal surfaces, J. Appl. Phys., 37, 3682(1966)

5 J.K.Zuo, J.F.Wendelken, Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100), Phys. Rev. Lett., 78, 2791(1997)

6 F.M.Wu, H.J.Lu, Z.Q.Wu, Simulation of multilayer homoepitaxial growth on Cu(100) surface, Chinese Physics, 15(4), 807(2006)

7 S.J.Liu, Hanchen Huang, C.H.Woo, Schwoebel–Ehrlich barrier: from two to three dimensions, Appl. Phys. Lett., 80, 3295(2002)

8 S.J.Liu, E.G.Wang, C.H.Woo, Hanchen Huang, Three–dimensional Schwoebel–Ehrlich barrier, J. Compu. Aided Materials Design, 7, 195(2001)

9 LI Jiayang, LI Rongwu, SUN Jundong, LIU Shaojun, Computation of the Ehrlich–Schwoebel barrier to adatom diffusion in heteroepitaxial systems, Acta Physica Sinica, 56, 446(2007)

(李佳阳, 李荣武, 孙俊东, 刘绍军, 异质扩散过程中ES势垒的计算, 物理学报, 56, 446(2007))

10 M.G.Lagally, Z.Y.ZHANG, Materials science: Thin–film cliffhanger, 417, 907(2002)

11 ZHU Yiguo, Three dimensional Monte Carlo model of thin film growth, 23(6), 640(2009)

(朱祎国, 薄膜生长的三维蒙特卡罗模型, 材料研究学报,  23(6), 640(2009))

12 ZHANG Peifeng, ZHENG Xiaopeng, HE Deyan, Monte Carlo simulation of thin film growth, Since in China, G33(4), 340(2003)

(张佩锋, 郑小平, 贺德衍, 薄膜生长的Monte Carlo 模拟, 中国科学,  G33(4), 340(2003))

13 LIU Zuli, ZHANG Xuefeng, YAO Kailun, HUANG Yunmi, Monte Carlo simulation of Cu thin film growth by magnetron sputtering, Chinese Journal of Vacuum Science and Technology, 25(2), 83(2005)

(刘祖黎, 张雪峰, 姚凯伦, 黄运米, 溅射沉积Cu膜生长的Monte Carlo模拟, 真空科学与技术学报,  25(2), 83(2005))

14 LIU Zuli, WEI Helin, WANG Hanwen, WANG Junzhen, A random model of thin film growth, Acta Physica Sinica, 48(7), 1302(1999)

(刘祖黎, 魏合林, 王汉文, 王均震, 薄膜生长的随机模型, 物理学报, 48(7), 1302(1999))

15 P.Bruschi, P.Cagnoni, A.Nannini, Temperature–dependent Monte Carlo simulations of thin metalfilm growth and percolation. Phys. Rev. B, 55 (12), 7955(1997)

16 J.A.Meyer, J.Vrijmoeth, H.A.van der Vegt, E.Vlieg, R.J.Behm, Importance of the additional step–edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B., 51, 14790(1995)

17 Z.Y.ZHANG, M.G.Layally, Atomic–scale mechanisms for surfactant–mediated layer–by–layer growth in homoepitaxy, Phys. Rev. Lett., 72, 693 (1994)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 邹田春, 巨乐章, 李龙辉, 符记. 铺层方式对CFRP-Al单搭接接头胶接性能的影响[J]. 材料研究学报, 2022, 36(9): 715-720.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 杨高元, 向文灏, 刘德政, 屈俊豪, 梁英, 李望南, 徐可, 钟杰, 黄福志, 陈美华, 梁桂杰. 基于水热反应制备SnO2纳米棒阵列[J]. 材料研究学报, 2021, 35(4): 293-301.
[6] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[7] 刘哲,陈博涵,陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响[J]. 材料研究学报, 2020, 34(2): 109-117.
[8] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[9] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[10] 贾彩霞,王乾,任荣,孙福宁. Technora纤维表面等离子体处理对其复合材料界面性能的影响[J]. 材料研究学报, 2019, 33(6): 461-466.
[11] 杨军,张家敏,马文瑾,杜立辉,易健宏,甘国友,游昕,李凤仙. 烧结温度对TC4合金的微观结构和力学性能的影响[J]. 材料研究学报, 2019, 33(5): 338-344.
[12] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[13] 江峻,黄诗鑫,王连登,张思彬,朱定一. 冷却速率对Al-20%Si合金Si相形貌及性能的影响[J]. 材料研究学报, 2019, 33(4): 291-298.
[14] 安欢,伍建春,张仲,王欢,孙华,展长勇,邹宇. 电化学刻蚀参数对高阻厚壁宏孔硅阵列表面形貌的影响[J]. 材料研究学报, 2019, 33(3): 177-184.
[15] 赵庆云,程思锐,黄宏. 1240 MPaTi-38644高锁螺栓的拉伸疲劳增寿机理[J]. 材料研究学报, 2019, 33(10): 735-741.