Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (2): 113-118    
  研究论文 本期目录 | 过刊浏览 |
沉淀强化奥氏体合金的氢致断裂行为
李忠文, 赵明久,戎利建
中国科学院金属研究所 沈阳 110016
Study on Behaviors of Hydrogen-induced Fracture of Precipitation Strengthened Austenitic Alloy
 Zhongwen,ZhAO Mingjiu,RONG Lijian
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李忠文 赵明久 戎利建. 沉淀强化奥氏体合金的氢致断裂行为[J]. 材料研究学报, 2012, 26(2): 113-118.
, . Study on Behaviors of Hydrogen-induced Fracture of Precipitation Strengthened Austenitic Alloy[J]. Chin J Mater Res, 2012, 26(2): 113-118.

全文: PDF(894 KB)  
摘要: 研究了未充氢和热充氢沉淀强化奥氏体合金的拉伸断裂行为, 分析了其氢脆敏感性与拉伸断裂行为间的联系, 研究了氢对合金局部塑性变形及微裂纹形核的影响。结果表明:氢使沉淀强化合金由单一的韧窝断裂转变为韧窝断裂、沿晶断裂和滑移带开裂的混合断裂方式。其原因是:一方面, 氢促进位错平面化滑移趋势、加剧局部塑性变形; 另一方面, 滑移带被晶界、孪晶界以及不同取向的滑移带所阻碍, 引起了位错塞积和氢聚集。
关键词 金属材料沉淀强化奥氏体合金沿晶断裂滑移带开裂氢致局部塑性变形    
Abstract:Correlation of hydrogen embritt/ement sensitivity and fracture behavior was investigated by means of tensile tests and fractographic examination in a precipitation strengthened austenitic alloy with and without hydrogen. Additionally, slip bands during tensile deformation were observed in order to determine the effect of hydrogen on localized plasticity and microcrack nucleation. The results show that the fracture mode of the precipitation strengthened austenitic alloy exhibits dramatic transition from dimple fracture in uncharged specimens to the mixed mode with dimple, intergranular and slip band fracture in charged specimens. As for the reason, it can be related to not only the slip planarity and localization induced by hydrogen but also the dislocation pile-up and hydrogen accumulation formed at the sites of grain boundaries, twin boundaries and intersecting slip bands.
Key wordsmetallic materials    precipitation strengthened austenitic alloy    intergranular fracture    slip band fracture    hydrogen-enhanced localized plasticity
收稿日期: 2012-01-13     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金资助项目51171178。

1 A.W.Thompson, J.A.Brooks, Hydrogen performance of precipitation-strengthened stainless-steels based on A-286, Metall. Trans. A, 6(7), 1431(1975)

2 M.C.Mataya, M.J.Carr, G.Krauss, Flow localization and shear band formation in a precipitation strengthened austenitic stainless steel, Metall. Trans. A, 13A, 1263(1982)

3 C.G.Rhodes, A.W.Thompson, Microstructure and hydrogen performance of alloy-903, Metall. Trans. A, 8(6), 949(1977)

4 M.R.Louthan, D.E.Rawl, G.R.Caskey, J.A.Donovan, Hydrogen embrittlement of metals, Mater. Sci. Eng., 10(6), 357(1972)

5 P.D.Hicks, C.J.Altstetter, Internal hydrogen effects on tensile properties of iron-base and nickel-base superalloys, Metall. Trans. A, 21(2), 365(1990)

6 D.G.Ulmer, C.J.Altstetter, Hydrogen-induced strain localization and failure of austenitic stainless-steels at high hydrogen concentrations, Acta Metall. Mater., 39(6), 1237(1991)

7 E.Herms, J.M.Olive, M.Puiggali, Hydrogen embrittlement of 316L type stainless steel, Mater. Sci. Eng. A, 272(2), 279(1999)

8 G.Zifeng, L.Hao, Z.Mingjiu, R.Lijian, Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys, Mater. Sci. Eng. A, 527(24-25), 6620(2010)

9 K.A.Nibur, B.P.Somerday, D.K.Balch, C.San Marchi, The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel, Acta Mater., 57(13), 3795(2009)

10 M.A.Meyers, K.K.Chawla, Mechanical Behavior of Materials, (New York, Cambridge University Press, 2008) p.470

11 V.G.Gavriljuk, V.N.Shivanyuk, B.D.Shanina, Change in the electron structure caused by C, N and H atoms in iron and its effect on their interaction with dislocations, Acta Mater., 53(19), 5017(2005)

12 H.K.Birnbauma, P.Sofronisa, Hydrogen-enhanced localized plasticity, Mater. Sci. Eng. A, 176(1-2), 191(1994)

13 P.J.Ferreira, I.M.Robertson, H.K.Birnbaum, Hydrogen effects on the interaction between dislocations, Acta Mater., 46(5), 1749(1998)

14 A.E.Pontini, J.D.Hermida, X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel, Scr. Mater., 37(11), 1831(1997)

15 V.Gerold, H.P.Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall., 37(8), 2177(1989)

16 A.C.Wang, C.G.Fan, D.F.Li, X.Xhao, K.Yang, Y.Y.Li, C.X.Shi, Effect of strengthening particle-size on hydrogen performance of incoloy-903, J. Mater. Sci. Lett., 13(16), 1187(1994)

17 T.C.Lee, I.M.Robertson, H.K.Birnbaum, An HVEM In situ deformation study of nickel doped with sulfur, Acta Metall., 37(2), 407(1989)

18 LI Xiuyan, LI Yiyi, Hydrogen Damaged of austenitic alloy, (Beijing, Sci. Press., 2003) p.45

(李秀艳, 李依依,  奥氏体合金的氢损伤,  (北京, 科学出版社, 2003) p.45)

19 N.R.Moody, F.A.Greulich, Hydrogen-induced slip band fracture in an Fe–Ni–Co superalloy, Scr. Metall., 19(9), 1107(1985)

20 A.Gysler, G.L¨ujering, V. Gerold, Deformation behavior of age–hardened Ti–Mo alloys, Acta Metall., 22, 901(1974)

21 V.G.Gavriljuk, V.N.Shivanyuk, J.Foct, Diagnostic experimental results on the hydrogen embrittlement of austenitic steels, Acta Mater., 51(5), 1293(2003)

22 CHU Wuyang, Hydrogen damage and delayed fracture, (Beijing, Metall. Ind. Press., 1998) p.254

(褚武扬,  氢损伤和滞后断裂,  (北京, 冶金工业出版社, 1998) p.254)

23 D.A.Koss, K.S.Chan, Fracture along planar slip bands, Acta Metall., 28(9), 1245(1980)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.