Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 151-160    DOI: 10.11901/1005.3093.2019.286
  研究论文 本期目录 | 过刊浏览 |
Ti65合金的初级蠕变和稳态蠕变
岳颗1,2,刘建荣1(),杨锐1,王清江1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Primary Creep and Steady-State Creep of Ti65 Alloy
YUE Ke1,2,LIU Jianrong1(),YANG Rui1,WANG Qingjiang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
YUE Ke, LIU Jianrong, YANG Rui, WANG Qingjiang. Primary Creep and Steady-State Creep of Ti65 Alloy[J]. Chinese Journal of Materials Research, 2020, 34(2): 151-160.

全文: PDF(2931 KB)   HTML
摘要: 

使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。

关键词 材料科学基础学科蠕变机制蠕变试验Ti65合金    
Abstract

The creep deformation behavior and relevant microscopic deformation mechanisms of Ti65 alloy were investigated via tensile creep test by stresses in the range of 120~160 MPa at 600~650oC and TEM observation. The results show that the primary creep deformation mechanism is dominated by the process of climbing-controlled dislocations crossing the α2 phases and the creep mechanism in the steady-state creep stage is dominated by the process of diffusion-controlled dislocation climbing at the α/β interfaces, and the stress index of steady-state creep stage varies from 5 to 7. The hindering of dislocation motions by α2 phases is the dominating process to strengthen the high-temperature creep resistance of Ti65 alloy during the primary creep stage. The silicide precipitates distributed along α/β phase boundaries, impede the dislocation motions and restrict the grain boundary slip (GBS), which is the dominating strengthening mechanism during the steady-state creep stage.

Key wordsmicrostructure and properties of materials    creep deformation    creep test    Ti65 alloy
收稿日期: 2019-06-03     
ZTFLH:  TG142.25  
作者简介: 岳颗,男,1990年生,博士生
图1  Ti65合金试样蠕变前的组织
图2  蠕变试样的尺寸示意图
图3  典型的蠕变应变-时间曲线
图4  Ti65合金在不同应力条件下的蠕变应变-时间曲线
Test conditionsεT/%rAdjusted R2
600℃120 MPa0.2150.00610.9820
140 MPa0.2050.00810.9822
160 MPa0.1460.01320.9912
630℃120 MPa0.2250.00850.9945
140 MPa0.2160.01100.9984
160 MPa0.1820.01480.9772
650℃120 MPa0.2600.01130.9960
140 MPa0.2330.04780.9862
160 MPa0.0860.04070.9973
表1  不同条件下蠕变曲线的数值拟合结果(蠕变I和II阶段)
Test conditions?s/h,×10-6εin/%εinter/%εp/% (tos, h)
600℃120 MPa0.730.1380.3530.420 (931 h)
140 MPa1.260.1470.3520.446 (746 h)
160 MPa3.080.1760.3220.451 (420 h)
630℃120 MPa2.620.1370.3620.515 (576 h)
140 MPa6.020.1500.3660.652 (470 h)
160 MPa15.90.1810.3630.639 (191 h)
650℃120 MPa5.670.1320.3920.668 (487 h)
140 MPa25.50.1600.3930.811 (159 h)
160 MPa42.70.2150.3010.610 (72 h)
表2  不同蠕变条件下蠕变应变与稳态蠕变速率的统计
图5  稳态蠕变速率、蠕变应变及稳态蠕变阶段开始时间随温度应力的变化
图6  补偿稳态蠕变速率与归一化应力的关系
图7  蠕变后组织形貌的TEM明场像
图8  不同实验条件下蠕变试样中的位错组态
图9  Ti65合金650℃/160 MPa条件下蠕变后位错组态
图10  TEM观察不同蠕变条件下硅化物对位错的钉扎作用
[1] ES-Souni M. Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti-5.8 Al-4.0 Sn-3.5 Zr-0.7 Nb-0.35 Si-0.06 C (Timetal 834): part I. Primary and steady-state creep [J]. Mater. Charact., 2001, 46(5): 365
[2] Hayes R. Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure [J]. Acta Mater., 2002, 50(20): 4953
[3] Viswanathan G, Karthikeyan S, Hayes R, et al. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation [J]. Acta Mater., 2002, 50(20): 4965
[4] Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100 [J]. J Mater. Eng. Perform., 1995, 4(2): 182
[5] Chandravanshi V, Sarkar R, Kamat S V, et al. Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium Alloy Ti-1100 [J]. Metall. Mater. Trans. A, 2012, 44(1): 201
[6] Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23(1): 1
[6] 赵亮, 刘建荣, 王清江等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23(1): 1
[7] Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng. A, 2017, 688: 322
[8] ES-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285
[9] Balasundar I, Raghu T, Kashyap B P. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime [J]. Mater. Sci. Eng. A, 2014, 609: 241
[10] Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat Mater, 2016, 15(8): 876
[11] Klein T, Usategui L, Rashkova B, et al. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures [J]. Acta Mater., 2017, 128: 440
[12] Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature [J]. Prog. Mater. Sci., 1968, 13: 323
[13] Kassner M E. Fundamentals of creep in metals and alloys [M]. Butterworth-Heinemann, 2015.
[14] Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
[14] 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
[15] Blum W, Eisenlohr P. Dislocation mechanics of creep [J]. Mater. Sci. Eng. A, 2009, 510-511: 7
[16] Chokshi A H. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina [J]. J. Mater. Sci., 1990, 25(7): 3221
[17] Langdon T G. Grain boundary sliding as a deformation mechanism during creep [J]. Philos. Mag., 2006, 22(178): 689
[18] Langdon T G. Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms [J]. Metall. Mater. Trans. A, 2002, 33(2): 249
[19] Kassner M E, Kumar P, Blum W. Harper-Dorn creep [J]. Int. J. Plast., 2007, 23(6): 980
[20] Kumar P, Kassner M E. Theory for very low stress (“Harper-Dorn”) creep [J]. Scr. Mater., 2009, 60(1): 60
[21] Langdon T G. Identifying creep mechanisms in plastic flow [J]. Z Metallk, 2005, 96(6): 522
[22] Kassner M E, Rez-Prado M T. Five-power-law creep in single phase metals and alloys [J]. Prog. Mater. Sci., 2000, 45(1): 1
[23] Blum W. Creep of crystalline materials: experimental basis, mechanisms and models [J]. Mat. Sci. Eng. a-Struct., 2001, 319: 8
[24] Viswanathan G B, Vasudevan V K, Mills M J. Modification of the jogged-screw model for creep of γ-TiAl [J]. Acta Mater., 1999, 47(5): 1399
[25] Morrow B M, Kozar R W, Anderson K R, et al. An examination of the use of the Modified Jogged-Screw model for predicting creep behavior in Zircaloy-4 [J]. Acta Mater., 2013, 61(12): 4452
[26] Xiang Y X, Deng X M, Xuan F Z, et al. Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys [J]. J. Appl. Phys., 2012, 111(10): 104905
[27] Le? K T, Svoboda J, Dlouh A. High temperature dislocation processes in precipitation hardened crystals investigated by a 3D discrete dislocation dynamics [J]. Int. J. Plast., 2017, 97: 1
[28] Flower H M, Swann P R, West D R F. Silicide precipitation in the Ti-Zr-Al-Si system [J]. Metall. Mater. Trans. B, 1971, 2(12): 3289
[29] Shamblen C, Redden T. Creep resistance and high-temperature metallurgical stability of titanium alloys containing gallium [J]. Metall. Trans., 1972, 3(5): 1299
[30] Onodera H, Nakazawa S, Ohno K, et al. Creep properties of α+α2 high temperature titanium alloys designed by the aid of thermodynamics [J]. ISIJ. Int, 1991, 31(8): 875
[31] Madsen A, Ghonem H. Separating the effects of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593℃ in a near-alpha titanium alloy [J]. J. Mater. Eng. Perform., 1995, 4(3): 301
[32] Dong F, He G Q, Zhang G T. Research development of the effect of Si element on titanium alloy [J]. Heat Treatment of Metals, 2007, 32(11): 5
[32] 董飞, 何国强, 张贵田. 合金元素 Si 在钛合金中作用的研究进展 [J]. 金属热处理, 2007, 32(11): 5
[33] Assadi A T K, Flower H M, West D R F. Creep resistance of certain alloys of the Ti-AI-Zr-Mo-Si system [J]. Met. Technol., 2013, 6(1): 16
[34] Neeraj T, Mills M. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.% Al alloy [J]. Mater. Sci. Eng. A, 2001, 319: 415
[35] Webster G, Cox A, Dorn J. A relationship between transient and steady-state creep at elevated temperatures [J]. Met. Sci. J., 1969, 3(1): 221
[36] Ajaja O, Ardell A. Microstructure and transient creep in an austenitic stainless steel [J]. Philos. Mag. A, 1979, 39(1): 65
[37] Choudhary B, Samuel E I. Creep behaviour of modified 9Cr-1Mo ferritic steel [J]. J. Nucl. Mater., 2011, 412(1): 82
[38] Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55(3): 1067
[39] Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750℃ and 750 MPa [J]. Mater. Sci. Eng. A, 2001, 300(1-2): 125
[40] ES-Souni M. Primary and anelastic creep of a near α-Ti alloy and their dependencies on stress and temperature [J]. Mech. Time-Depend. Mater., 1998, 2(3): 211
[41] ES-Souni M. Primary, secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si [J]. Mater. Charact., 2000, 45(2): 153
[42] Gollapudi S, Satyanarayana D V V, Phaniraj C, et al. Transient creep in titanium alloys: Effect of stress, temperature and trace element concentration [J]. Mater. Sci. Eng. A, 2012, 556: 510
[43] Chen W, Boehlert C. Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1 Si (weight percent) [J]. Metall. Mater. Trans. A, 2009, 40(7): 1568
[44] Phaniraj C, NandagopaL M, Mannan S, et al. The relationship between transient and steady state creep in AISI 304 stainless steel [J]. Acta Metall. Mater., 1991, 39(7): 1651
[45] Phaniraj C, RAO K B S, SL M. Creep deformation behaviour and kinetic aspects of 9Cr-1Mo ferritic steel [J]. ISIJ. Int., 2001, 41(Suppl): S73
[46] Nabarro F R N. Creep in commercially pure metals [J]. Acta Mater., 2006, 54(2): 263
[47] Hofmann H, Frommeyer G, Derder C. Creep mechanisms in particle strengthened α-Titanium-Ti2Co alloys [J]. Mater. Sci. Eng. A, 1998, 245(1): 127
[48] Paton N E, Mahoney M W. Creep of titanium-silicon alloys [J]. Metall. Trans. A, 1976, 7(11): 1685
[49] Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2019.
[50] Yue K, Liu J R, Zhu S X, et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65 [J]. Mater., 2018, 1: 128
[51] Miller W, Chen R, Starke E. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans. A, 1987, 18(8): 1451
[52] Chan K S. A micromechanical analysis of the yielding behavior of individual widmanst?tten colonies of an α+ β titanium alloy [J]. Metall. Mater. Trans. A, 2004, 35(11): 3409
[53] Marquis E A, Dunand D C. Model for creep threshold stress in precipitation-strengthened alloys with coherent particles [J]. Scr. Mater., 2002, 47(8): 503
[54] Ivanov L, Yanushkevich V. The mechanism of fatigue creep of body-centered cubic metals [J]. Fiz. Metal. Metal., 1964, 17: 112
[55] Blum W. Role of Dislocation Annihilation during Steady-State Deformation [J]. Phys. Status Solidi B, 1971, 45(2): 561
[56] Weertman J, Wilshire B, Owen D. Natural Fifth Power Creep law for Pure Metals [M]. Creep and Fracture of Engineering Materials and Structures. Pineridge Press. 1984
[57] Li H, Boehlert C J, Bieler T R, et al. Analysis of the deformation behavior in tension and tension-creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23℃ and 455℃) using in situ SEM experiments [J]. Metall. Mater. Trans. A, 2014, 45(13): 6053
[58] Li H, Boehlert C J, Bieler T R, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt%) usingin-situ SEM experiments [J]. Philos. Mag., 2012, 92(23): 2923
[59] Li H, Mason D E, Yang Y, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728?K [J]. Philos. Mag., 2013, 93(21): 2875
[60] Dastidar I G, Khademi V, Bieler T R, et al. The tensile and tensile-creep deformation behavior of Ti-8Al-1Mo-1V(wt%) [J]. Mater. Sci. Eng. A, 2015, 636: 289
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[8] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[9] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[10] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[11] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[12] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[13] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[14] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.
[15] 汪汝武,刘静,甘章华,曾春,张凤泉. Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)非晶合金的结晶动力学*[J]. 材料研究学报, 2014, 28(3): 204-210.