Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 109-117    DOI: 10.11901/1005.3093.2019.420
  研究论文 本期目录 | 过刊浏览 |
氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响
刘哲1,2,陈博涵1,陈平1()
1. 大连理工大学化工学院精细化工国家重点实验室 大连 116024
2. 山西省交通科技研发有限公司 太原 030032
Treatment of Oxygen Dielectric Barrier Discharge Plasma on PBO Fiber Surface and Influence on Its BMI Composites
LIU Zhe1,2,CHEN Bohan1,CHEN Ping1()
1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2. Shanxi Transportation Technology Research & Development Co. Ltd. ,Taiyuan 030032, China
引用本文:

刘哲,陈博涵,陈平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响[J]. 材料研究学报, 2020, 34(2): 109-117.
Zhe LIU, Bohan CHEN, Ping CHEN. Treatment of Oxygen Dielectric Barrier Discharge Plasma on PBO Fiber Surface and Influence on Its BMI Composites[J]. Chinese Journal of Materials Research, 2020, 34(2): 109-117.

全文: PDF(3275 KB)   HTML
摘要: 

采用氧气介质阻挡放电(DBD)等离子体处理PBO纤维表面,用以改善PBO纤维与双马来酰亚胺(BMI)树脂之间的界面粘结性能。结果表明,用氧气等离子体处理PBO纤维能大幅度提高PBO/BMI复合材料的层间剪切强度(ILSS)值,最佳处理条件为功率30 W/m3、时间24 s,ILSS值从43.9 MPa提高到62.0 MPa。经过氧气DBD等离子体处理的PBO纤维其表面的氧含量明显提高,氮含量变化不大,甚至在过度处理时降低;官能团-O-C=O基团的含量从0提高到3.16%,-C-O-的含量也明显提高;在氧气DBD等离子体处理后的PBO纤维表面产生大量凹凸不平和沟壑,使纤维表面的粗糙度提高。而表面氧含量的提高和表面形貌与粗糙度的变化,是PBO/BMI复合材料ILSS值提高的重要原因。单丝拉伸实验结果表明,适当的DBD等离子体处理不会对PBO纤维表面产生不良影响,不影响其在复合材料中的作用。

关键词 材料表面与界面DBD等离子体PBO纤维表面形貌化学成分界面粘结强度    
Abstract

Poly-p-phenylene benzobisoxazole (PBO) fibers surface were treated by oxygen dielectric barrier discharge (DBD) plasma to improve the interfacial adhesion between PBO fibers and bismaleimide (BMI) resin. The inter laminar shear strength (ILSS) of PBO/BMI composites greatly increased from 43.9 MPa to 62.0 MPa after oxygen plasma treatment for 24 s with the optimal parameter of 30 W/m3. After oxygen DBD plasma treatment the O content on the surface of PBO fibers increased significantly, but that of N did not change much, even decreased after being overtreated. The content of functional groups -O-C=O group increased from 0 to 3.16%, while the content of -C-O- increased significantly. The oxygen DBD plasma treatment produced a lot of bumps and ravines on the surface of PBO fibers. The surface morphology of the fibers becomes complex and their surface roughness was enhanced to certain extent. The increase of surface oxygen content, as well as the change of surface morphology and roughness are the important reasons for the increase of ILSS value of PBO/BMI composites. In addition, appropriate DBD plasma treatment will not have a significant adverse impact on the tensile strength of PBO fibers, will not affect its role in composite materials.

Key wordssurface and interface in the materials    DBD plasma    PBO fiber    surface morphology    chemical    interfacial adhesion strength
收稿日期: 2019-08-28     
ZTFLH:  V258  
基金资助:兴辽英才计划-创新领军人才项目(XLYC1802085);山西省青年基金(201801D221105);大连市科技创新基金计划(2019J11CY007);山西省交通控股集团有限公司科技项目(19-JKKJ-64);山西省科技重大专项(20181101019)
作者简介: 刘哲,男,1986年生,博士,高级工程师
图1  PBO的化学结构式
PropertiesValues
Viscosity/Pa·s(80℃)0.5~1.5
Softening point/℃20~30
Tensile strength/MPa65
Tensile modulus/GPa3.3
Elongation at break/%2.5
Fracture energy release rate/J·m-2298
Tg/℃

According to E’:240

According to tanδ:270

表1  QY8911-II BMI树脂的性能
图2  聚醚砜改性剂的分子式
ParameterTemperaturePressureTime
PreheatRoom temperature~125℃0 MPa30 min
Gel125℃0.5 MPa50~60 min
Solidify190℃1.5 MPa3 h
Post curing235℃1.5 MPa3 h
CoolingNatural cooling to room temperature
表 2  复合材料高温模压参数
图3  氧气DBD等离子体处理不同时间后PBO/BMI复合材料的ILSS
图4  氧气DBD等离子体处理不同时间后PBO纤维表面的XPS全谱图

Treatment

time/s

Relative elemental concentration/%, atomic fractionAtomic ratio
CONO/CN/C
077.2218.014.770.230.06
1274.2022.144.660.300.06
2470.9724.834.210.350.06
3676.8420.502.660.270.03
表3  氧气DBD等离子体处理不同时间后PBO纤维表面元素的含量
图5  氧气DBD等离子体处理不同时间后PBO纤维表面XPS的C1s 分峰谱图

Treatment

time/s

Concentration of correlative functional groups/%
-C-C--C-N--C-O--O-C=N--O-C=O
070.5311.256.3211.890
1260.5420.218.487.613.16
2452.9822.0214.615.365.04
3663.3419.567.335.214.56
表4  氧气DBD等离子体处理不同时间后PBO纤维表面各官能团的含量
图6  氧气DBD等离子体处理不同时间后PBO纤维的SEM照片
图7  氧气DBD等离子体处理不同时间后PBO纤维的AFM图
Treatment time/sRa/nmRq/nm
0192.4213.5
12232.5245.6
24291.7312.1
36374.6401.3
表5  氧气DBD等离子体处理不同时间后PBO纤维表面的粗糙度
Treatment time/s

Single fiber

tensile strength

/MPa

Standard deviation

/MPa

Decreasing rate/%
056243580
1254444253.2%
2453524034.8%
36498841611.3%
表6  氧气DBD等离子体处理不同时间后PBO 纤维的单丝拉伸强度
[1] Hearle J W S. High-performance Fibers [M]. Beijing: China Textile Apparel Press, 2004: 118
[1] (Hearle J W S.高性能纤维 [M]. 北京: 中国纺织出版社, 2004: 118)
[2] Kitagawa T, Yabuki K, Young R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression [J]. Polymer, 2001, 42: 2101
[3] Y-H So. Rigid-rod polymers with enhanced lateral interactions [J]. Progress in Polymer Science, 2000, 25: 137
[4] Wang J J, Ma X Y, Liang G Z. Research development of modifying method of bismaleimide resin [J]. Thermosetting Resin, 2003, 18(5): 25
[4] (王娟娟, 马晓燕, 梁国正. 双马来酰亚胺树脂改性研究进展 [J]. 热固性树脂, 2003, 18(5): 25)
[5] Jiang Y, Dou K C, Wu G L, et al. Research progress of synthesis and modification of bismaleimide resin [J]. China Adhesives,2011, 20(7): 48
[5] (蒋洋, 寇开昌, 吴广磊等. 双马来酰亚胺树脂合成与改性研究进展 [J]. 中国胶黏剂, 2011, 20(7): 48)
[6] Zhao Q S. BMI resin system and affordble composite [J]. Materials Reports, 2001, 15(10): 2
[6] (赵渠森. QY8911马来酰亚胺树脂和复合材料低成本 [J]. 材料导报, 2001, 15(10): 2)
[7] Wu G M, Shyng Y T. Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment [J]. Composites Part A, 2004, 35: 1291
[8] Wu G M, Hung C H, You J H, et al. Surface modification of reinforcement fibers for composites by acid treatments [J]. Journal of Polymer Research, 2004, 11: 31
[9] Wang B, Jin Z H, Qiu Z M, et al.Effect of coupling agent on interfacial adhesion of poly (P-phenylene benzobisoxazole) fibre/epoxy matrix composites [J]. Journal of Xi′an Jiaotong Uiversity, 2002, 34: 10
[9] (王斌, 金志浩, 丘哲明等. 偶联剂对PBO纤维/树脂界面粘结性能的影响 [J]. 西安交通大学学报, 2002, 34: 10)
[10] Liu D D, Wang Y, Hu J, et al. Plasma modification on PBO fiber surface and interfacial properties of PBO fibers [J]. Journal of South China University of Technology (Natural Science Edition),2006, 34: 10
[10] (刘丹丹, 王宜, 胡健等. PBO纤维表面等离子体改性及界面性能 [J]. 华南理工大学学报(自然科学版), 2006, 34: 10)
[11] Yue Z N, Huang Y, Wang Y, et al. Effect of fiber surface treatment on interface performance of PBO/epoxy resins composites [J]. Aerospace Materials & Technology, 2010, (6): 45
[11] (岳震南, 黄 英, 王 岩等. 纤维表面处理对PBO/环氧界面性能的影响 [J]. 宇航材料工艺, 2010, (6):45)
[12] Liu X F, Sui S J, Xie J X. Preparation of Cu/n-TiO2/PBO composite fibers [J]. Acta Materiae Compositae Sinica, 2008, 25(1): 28
[12] (刘雪峰, 隋守军, 谢建新. Cu/n-TiO2/PBO复合纤维的制备 [J]. 复合材料学报, 2008, 25(1): 28)
[13] Wang B, Jin Z H, Qiu Z M, et al. Effect of corona treatment on the surface and interfacialadhesion properties of high performance poly(p-phenylene benzobisoxazole) (PBO) Fibre [J]. Acta Materiae Compositae Sinica, 2003, 20(4): 101
[13] (王 斌, 金志浩, 邱哲明等. 电晕处理对高性能PBO纤维的表面性能及其界面粘结性能的影响 [J]. 复合材料学报, 2003, 20(4): 101)
[14] So C L, Young R J. Interfacial failure in poly(p-phenylene benzobisoxazole) (PBO)/epoxy single fibre pull-out specimens [J]. Composites Part A, 2001, 32: 445
[15] Zhang C H, Huang Y D, Zhao Y D. Surface analysis of γ-ray irradiation modified PBO fiber [J]. Materials Chemistry and Physics, 2005, 92: 245
[16] Zhang C H, Luan S L, Wang S W, et al. Interfacial property of irradiation modified PBO fiber/epoxy resin [J]. Acta Materiae Compositae Sinica, 2003(4): 3
[16] (张春华, 栾世林, 王世威等. 辐照改性PBO纤维/环氧树脂界面性能 [J]. 纤维复合材料, 2003, (4): 3)
[17] Xu G H, Jiang E Y, Sheng J. Plasma Tchnology and Application [M]. Beijing: Chemical Industry Press, 2006: 229
[17] (许根慧, 姜恩永, 盛 京. 等离子体技术与应用 [M]. 北京: 化学工业出版社, 2006: 229)
[18] Li R Z, Ye L, Mai Y W. Application of plasma technologies in fiber-reinforced polymer composites: a review of recent developments [J]. Composites Part A, 1997, 28A: 73
[19] D’Agostino R, Favia P, Oehr C, et al. Low-temperature plasma processing of materials: past, present, and future [J]. Plasma Processes and Polymers, 2005, 2: 7
[20] Ferrero F, Bongiovanni R. Improving the surface properties of cellophane by air plasma treatment [J]. Surface and Coatings Technology, 2006, 200: 4770
[21] Coata T H C, Feitor M C, Alves J C, et al. Effects of gas composition during plasma modification of polyester fabrics [J]. Journal of Materials Processing Technology, 2006, 173: 40
[22] Chen P, Chen H. Interface and Fiber Surface Modification of Advanced Polymer Matrix Composites [M]. Beijing: Science Press, 2010:50
[22] (陈 平, 陈 辉. 先进聚合物基复合材料界面及其纤维表面改性 [M]. 北京: 科学出版社, 2010: 50)
[23] Liu D. Influence of radio-frequency inductively coupled plasma treatment on the interfacial adhesion PBO fiber-reinforced bismaliemide composites [D]. Dalian: Dalian University of Technology, 2012
[23] (刘 东. 射频电感耦合等离子体表面处理对PBO/BMI复合材料界面性能的影响 [D]. 大连: 大连理工大学, 2012)
[24] Lu C. CF/soluble poly(arylether)s composite: preparation, interfaeial property and simulation of thermal stress [D]. Dalian: Dalian University of Technology, 2008
[24] (陆 春. 碳纤维增强可溶性聚芳醚复合材料的制备、界面性能及热应力模拟 [D]. 大连: 大连理工大学, 2008)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.