Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 19-24    
  研究论文 本期目录 | 过刊浏览 |
聚醋酸乙烯酯/纳米ZnO颗粒复合材料的等离子聚合及其光学性能
杨慧慧, 李来风, 黄荣进, 黄传军, 张浩, 徐向东
中国科学院低温工程学重点实验室(理化技术研究所) 北京 100190
Fabrication and Optical Properties of PVAC–functionalized ZnO Nanoparticles through Plasma Polymerization Process
YANG Huihui, HUANG Rongjin, HUANG Chuanjun, ZHANG Hao, LI Laifeng, XU Xiangdong
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
引用本文:

杨慧慧 李来风 黄荣进 黄传军 张浩 徐向东. 聚醋酸乙烯酯/纳米ZnO颗粒复合材料的等离子聚合及其光学性能[J]. 材料研究学报, 2011, 25(1): 19-24.
, , , , , . Fabrication and Optical Properties of PVAC–functionalized ZnO Nanoparticles through Plasma Polymerization Process[J]. Chin J Mater Res, 2011, 25(1): 19-24.

全文: PDF(1107 KB)  
摘要: 采用等离子镀膜方法在纳米ZnO颗粒表面沉积一层有机薄膜, 制备出聚合物/ZnO复合材料。用高分辨透射电子显微镜(HRTEM)、傅立叶变换红外光谱(FTIR)、光致发光光谱(PL)和紫外--可见吸收光谱(UV--Vis)对其形貌、结构和性能进行表征, 研究了聚合物/ZnO复合材料的光学性能以及聚合物与纳米ZnO颗粒的结合强度。结果表明, 用等离子镀膜法可在纳米ZnO颗粒表面沉积一层醋酸乙烯酯(VAC)聚合物薄膜, 薄膜与无机纳米ZnO颗粒以共价键形式结合, 结合牢固。 这层聚合物薄膜改变了纳米ZnO的表面性能, 导致聚合物/ZnO复合材料的紫外--可见吸收能力增强而光致发光性能降低。
关键词 复合材料  等离子聚合  表面改性  纳米ZnO    
Abstract:Surface modification of ZnO nanoparticle with polyvinyl acetate was conducted through–plasma polymerization process. The surface morphology and structure of the functionalized ZnO nanoparticles were investigated. The influence of surface modification on optical properties was examined. The results indicated that a uniform layer with a thickness of 3–7 nm formed on the surface of the ZnO nanoparticles. The thin layer on the surface of the ZnO nanoparticles was found to be polyvinyl acetate (PVAC). Moreover, ageing test for two years indicated that the adhesion behavior between the organic VAC and the inorganic ZnO nanoparticles was good. In marked contrast to the uncoated ZnO nanoparticles, the surface modification resulted in significant decrease of PL intensity. UV/Vis spectra revealed that the PVAC–functionalized ZnO nanoparticles show strong absorption of UV light at wavelengths between 200 and 800 nm while the optical transparency in the visible region was slightly below that of the untreated ZnO nanoparticles.
Key wordscomposites    plasma polymerization    surface modification     ZnO nanoparticles
收稿日期: 2010-07-07     
ZTFLH: 

TB43

 
基金资助:

国家自然科学基金50947034和中科院天津专项基金TJZX2--YW--18资助项目。

1 L.Feng, C.Cheng, B.D.Yao, N.Wang, M.M.T.Loy, Photoluminescence study of single ZnO nanostructures: Size effect, Applied Physics Letters, 95(5), 053113(2009)

2 Y.L.Wu, A.I.Y.Tok, F.Y.C.Boey, X.T.Zeng, X.H.Zhang, Surface modification of ZnO nanocrystals, Applied Surface Science, 253(12), 5473(2007)

3 L.C.Chao, S.H.Yang, Growth and Auger electron spectroscopy characterization of donut–shaped ZnO nanostructures, Applied Surface Science, 253(17), 7162 (2007)

4 Y.J.Jang, C.Simer, T.Ohm, Comparison of zinc oxide nanoparticles and its nano–crystalline particles on the photocatalytic degradation of methylene blue, Materials

Research Bulletin, 41(1), 67(2006)

5 J.Eriksson, V.Khranovskyy, F.Soderlind, P.O.Kall, R.Yakimova, A.L.Spetz, ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities, Sensors and

Actuators B–Chemical, 137(1), 94 (2009)

6 S.Chakrabarti, B.K.Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3),

269(2004)

7 M.L.Curri, R.Comparelli, P.D.Cozzoli, G.Mascolo, A.Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye, Materials Science & Engineering C–Biomimetic and Supramolecular Systems, 23(1–2), 285(2003)

8 R.Y.Hong, T.T.Pan, J.Z.Qian, H.Z.Li, Synthesis and surface modification of ZnO nanoparticles, Chemical Engineering Journal, 119(2–3), 71(2006)

9 F.H.Su, Z.Z.Zhang, W.M.Liu, Friction and wear behavior of hybrid glass/PTFE fabric composite reinforced with surface modified nanometer ZnO, Wear, 265(3–4), 311(2008)

10 TIAN Jiwen, CHEN Min, LI Changmin, ZHANG Qingyu, REN Chunsheng, Advances in biomaterial surface m0dification for biomolecules immobilization using low z temperature plasma, Materials Review, 19(3), 10 (2005)

(田继问, 陈 敏, 李长敏, 张庆瑜, 任春生, 低温等离子体对生物材料表面改性固定生物分子的研究进展, 材料导报,  19(3), 10(2005))

11 Z.N.Utegulov, D.B.Mast, P.He, D.L.Shi, R.F.Gilland, Functionalization of single–walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy

study, Journal of Applied Physics, 97(10), 4(2005)

12 M.W.Shao, M.L.Zhang, N.B.Wong, D.D.D.Ma, H.Wang, W.W.Chen, S.T.Lee, Ag–modified silicon nanowires substrate for ultrasensitive surface–enhanced raman spectroscopy,

Applied Physics Letters, 93(23), 233118(2008)

13 D.L.Shi, J.Lian, P.He, L.M.Wang, W.J.van Ooij, M.Schulz, Y.J.Liu, D.B.Mast, Plasma deposition of ultrathin polymer films on carbon nanotubes, Applied Physics Letters, 81(27), 5216(2002)

14 D.L.Shi, S.X.Wang, W.J.van Ooij, L.M.Wang, J.G.Zhao, Z.Yu, Uniform deposition of ultrathin polymer films on the surfaces of Al2O3 nanoparticles by a plasma treatment, Applied Physics Letters, 78(9), 1243(2001)

15 J.Zhao, D.L.Shi, J.Lian, Small angle light scattering study of improved dispersion of carbon nanofibers in water by plasma treatment, Carbon, 47(10), 2329(2009)

16 D.S.Vicentini, A.Smania, M.C.M.Laranjeira, Chitosan/ poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers, Materials Science & Engineering C–Materials for Biological Applications, 30(4), 503(2010)

17 E.Kandare, J.M.Hossenlopp, Thermal degradation of acetate–intercalated hydroxy double and layered hydroxy salts, Inorganic Chemistry, 45(9), 3766(2006)

18 M.H.Rashid, M.Raula, R.R.Bhattacharjee, T.K.Mandal, Low–temperature polymer–assisted synthesis of shape– tunable zinc oxide nanostructures dispersible in both aqueous and non–aqueous media, Journal of Colloid and Interface Science, 339(1), 249(2009)

19 P.He, Y.Gao, J.Lian, L.M.Wang, D.Qian, J.Zhao, W.Wang, M.J.Schulz, X.P.Zhou, D.L.Shi, Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites, Composites Part a–Applied Science and Manufacturing, 37(9), 1270(2006)

20 D.L.Shi, Y.Guo, Z.Y.Dong, J.Lian, W.Wang, G.K.Liu, L.M.Wang, R.C.Ewing, Quantum–dot–activated luminescent carbon nanotubes via a nano scale surface functionalization

for in vivo imaging, Advanced Materials, 19(22), 4033(2007)

21 L.P.Peng, L.Fang, X.F.Yang, Y.J.Li, Q.L.Huang, F.Wu, C.Y.Kong, Effect of annealing temperature on the structure and optical properties of In–doped ZnO thin films, Journal of Alloys and Compounds, 484(1–2), 575(2009)

22 J.Zhang, L.D.Sun, H.Y.Pan, C.S.Liao, C.H.Yan, ZnO nanowires fabricated by a convenient route, New Journal of Chemistry, 26(1), 33(2002)

23 G.Xiong, U.Pal, J.G.Serrano, Correlations among size, defects, and photoluminescence in ZnO nanoparticles, Journal of Applied Physics, 101(2), 024317(2007)

24 R.O.Moussodia, L.Balan, R.Schneider, Synthesis and characterization of water–soluble ZnO quantum dots prepared through PEG–siloxane coating, New Journal of Chemistry, 32(8), 1388(2008)

25 B.Karthikeyan, C.S.S.Sandeep, R.Philip, M.L.Baesso, Study of optical properties and effective three–photon absorption in Bi–doped ZnO nanoparticles, Journal of Applied Physics, 106(11), 114304(2009)

26 S.Mandal, A.Dhar, S.K.Ray, Growth and photoluminescence characteristics of ZnO tripods, Journal of Applied Physics, 105(3), 033513(2009)

27 Z.Q.Li, Y.Xie, Y.J.Xiong, R.Zhang, A novel non–template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant, New Journal of Chemistry,

27(10), 1518(2003)

28 A.Glaria, M.L.Kahn, T.Cardinal, F.Senocq, V.Jubera, B.Chaudret, Lithium ion as growth–controlling agent of  ZnO nanoparticles prepared by organometallic synthesis, New Journal of Chemistry, 32(4), 662(2008)

29 Y.H.Tong, Y.C.Liu, S.X.Lu, L.Dong, S.J.Chen, Z.Y.Xiao, The optical properties of ZnO nanoparticles capped with polyvinyl butyral, Journal of Sol–Gel Science and Technology, 30(3), 157(2004)

30 G.G.Khan, N.Mukherjee, A.Mondal, N.R.Bandyopadhyay and A. Basumallick, Optical and field emission characteristics of anodic aluminium oxide/ZnO hybrid nanostructure, Materials Chemistry and Physics, 122(1), 60 (2010)

31 N.C.Das, S.Upreti, P.E.Sokol, Small angle neutron scattering and photoluminescence property of wet chemistry process synthesised ZnO nanoparticles, Journal of Experimental

Nanoscience, 5(2), 180(2010)

32 H.C.Zhu, J.Iqbal, H.J.Xu, D.P.Yu, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor–liquid–solid process, Journal of Chemical Physics, 129(12), 5(2008)

33 Q.J.Yu, W.Y.Fu, C.L.Yu, H.B.Yang, R.H.Wei, M.H.Li, S.K.Liu, Y.M.Sui, Z.L.Liu, M.X.Yuan, G.T.Zou, G.R.Wang, C.L.Shao, Y.C.Liu, Fabrication and optical properties of large–scale ZnO nanotube bundles via a simple solution route, Journal of Physical Chemistry C, 111(47), 17521(2007)

34 C.L.Yang, J.N.Wang, W.K.Ge, L.Guo, S.H.Yang, D.Z.Shen, Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots, Journal of Applied Physics, 90(9), 4489(2001)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.