Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (6): 643-648    
  研究论文 本期目录 | 过刊浏览 |
FHA涂层的制备及生物活性
周宏明,曾麟,易丹青,郭雁军,刘芙蓉
中南大学材料科学与工程学院 长沙 410083
Research on the Preparation and Bioactivity of FHA Coatings
ZHOU Hongming, ZENG Lin, YI Danqing, GUO Yanjun, LIU Furong
School of Materials Science and engineering, Central South University, Changsha 410083
引用本文:

周宏明 曾麟 易丹青 郭雁军 刘芙蓉. FHA涂层的制备及生物活性[J]. 材料研究学报, 2010, 24(6): 643-648.
, , , , . Research on the Preparation and Bioactivity of FHA Coatings[J]. Chin J Mater Res, 2010, 24(6): 643-648.

全文: PDF(1019 KB)  
摘要: 采用沉淀法制备了F掺杂HA的FHA(Ca10(PO4)6(OH)F)粉末, 并通过电泳沉积在钛合金(Ti6Al4V)表面制备了FHA涂层。通过X射线衍射(XRD), 扫描电镜(SEM), 能谱仪(EDS)研究了基体预处理方式对涂层形貌和结合力的影响, 并且研究了涂层的生物活性。结果表明:酸处理后涂层表面有微裂纹存在, 酸处理+碱处理后的涂层表面无裂纹并具有更高的结合强度;FHA涂层浸泡后表面形成缺钙类骨磷灰石, 成花瓣状生长, 长度为几百纳米, 具有优良的生物活性。
关键词 无机非金属材料FHA涂层电泳沉积生物活性    
Abstract:FHA (Ca10(PO4)6(OH)F) powder of F doping Ca10(PO4)6OH)2 (HA) was synthesized by the precipitation method, and the FHA coating was prepared on the surface of the titanium alloy (Ti6Al4V) by electrophoretic deposition. XRD, SEM and EDS were used to investigate the influences of the substrate pretreatments on the coating morphology and binding force of the coatings, and the bioactivity of the coatings was also investigated. The results show that there are microcracks on the surface of the coatings pretreated by acid treatment, however, the microcracks are not found on the surface of the coatings treated by alkali treatment after acid treatment, having higher adhesion than those coatings pretreated by acid treatment. Bone-like calcium deficiency apatite, which grown like petal, with several hundred nanometers in length, formed on the surface of FHA coating after soaking, showing an excellent biological activity.
Key wordsinorganic non-metallic materials    FHA    coatings    electrophoretic deposition    bioactivity
收稿日期: 2010-07-22     
ZTFLH: 

TQ174

 
基金资助:

湖南省国际合作重点2008WK2005, 中国博士后基金特别200801350和教育部博士点新教师基金20080533106资助项目。

[1] Rodriguez-Lorenzo L M, Hart J N, Gross K A. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite [J]. Biomaterials, 2003, 24(21): 3777-3785. [2] Suchanek W L, Shuk P, Byrappa K, et al. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature [J]. Biomaterials, 2002, 23(3): 699-710. [3] Tenhuisen K S, Martin R I, Klimkiewicz M, et al. Formation and properties of a synthetic bone composite: Hydroxyapatite- collagen [J]. Journal of Biomedical Materials Research, 1995, 29(7): 803-810. [4] Locardi B, Pazzaglia U E, Gabbi C, et al. Thermal behaviour of hydroxyapatite intended for medical applications [J]. Biomaterials, 1993, 14(6): 437-441. [5] Moreno E C, Kresak M, Kane J J, et al. ADSORPTION OF PROTEINS, PEPTIDES, AND ORGANIC ACIDS FROM BINARY MIXTURES ONTO HYDROXYLAPATITE.[J]. Langmuir, 1987, 3(4): 511-519. [6] Chen Y, Miao X. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents [J]. Biomaterials,2005,26(11):1205-1210. [7] Wei M, Evans J H. Synthesis and characterisation of hydroxyapatite and fluorapatite [C]. Palm Springs, CA, United states:Trans Tech Publications Ltd,2002. [8] Lugscheider E, Knepper M, Heimberg B, et al. Cytotoxicity investigations of plasma sprayed calcium phosphate coatings [J]. Journal of Materials Science: Materials in Medicine, 1994, 5(6-7): 371-375. [9] 陈晓明. 电泳共沉积—烧结法制备钛合金表面生物活性梯度陶瓷涂层的研究[D]. 武汉理工大学,2002. [10] 姚亮. 纯钛基体表面电泳沉积羟基磷灰石涂层的研究[D]. 山东大学,2007. [11] 曾麟, 周宏明, 易丹青, et al. FHA的热物性能及生物活性研究[J]. 功能材料, 2010, 41(1): 100-105. [12] 段友容. 骨诱导Ca、P系陶瓷材料中类骨磷灰石层的形成、表征和体外动态研究模型的初步建立[D]. 四川大学, 2002. [13] Hench L L, Wheeler D L, Greenspan D C. Molecular control of bioactivity in sol-gel glasses[J]. Journal of Sol-Gel Science and Technology, 1999, 13(1-3): 245-250. [14] 林东洋. 磁控溅射技术制备HA/YSZ/Ti6A14V生物梯度复合材料[D]. 江苏大学,2006. [15] 段友容, 吕万新, 王朝元, et al. 在动态模拟体液中致密CaP陶瓷表面形貌对类骨磷灰石层形成的影响研究[J]. 生物医学工程学杂志,2002,19(2):186-190.
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[8] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[9] 杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[12] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[15] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.