Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (6): 592-596    
  研究论文 本期目录 | 过刊浏览 |
电子束熔炼冶金级硅除铝研究
董伟1,2,  王强1,2,  彭旭1,2,  谭毅1,2,  姜大川1,2,  李国斌1
1.辽宁省太阳能光伏系统重点实验室 大连 116024
2.大连理工大学材料科学与工程学院 大连 116204
Aluminum Evaporation from Metallurgical Silicon in Electron Beam Melting Process
DONG Wei1,2,   WANG Qiang1,2,   PENG Xu1,2,   TAN Yi1,2,   JIANG  Dachuan1,2,   LI Guobin1
1.Key Laboratory for Solar Energy Photovoltaic of Liaoning Province, Dalian 116204
2.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
引用本文:

董伟 王强 彭旭 谭毅 姜大川 李国斌. 电子束熔炼冶金级硅除铝研究[J]. 材料研究学报, 2010, 24(6): 592-596.
, . Aluminum Evaporation from Metallurgical Silicon in Electron Beam Melting Process[J]. Chin J Mater Res, 2010, 24(6): 592-596.

全文: PDF(916 KB)  
摘要: 采用电子束熔炼工艺提纯了冶金级硅材料。硅中重要杂质元素Al在制备铸锭中的分布不均匀, 呈现出由底部到顶部、由边缘到中心的富集趋势。铸锭边缘部位的杂质Al含量最低,已经低于ICP--AES的探测极限(1×10-5%)。对杂质Al的挥发去除过程进行了理论分析。由Langmuir方程和Henry定律导出了杂质Al的去除率与熔体表面温度、熔炼时间的关系式, 该关系式表明杂质Al的去除率会随着熔体表面温度升高、熔炼时间延长而增加, 其理论计算值与实测结果符合的较好。
关键词 无机非金属材料电子束熔炼分凝挥发    
Abstract:Metallurgical grade silicon was purified by electron beam melting (EBM) method. The distribution of aluminum in the ingot was found that aluminum was dragged from the bottom to the top and from the edge to the center of the ingot. The aluminum content in the edge was the lowest, even lower than the detection limit (1×10−5%) of ICP–AES. The evaporation of aluminum during EBM process was studied both theoretically and experimentally. The relationship between the removal efficiency for aluminum and the surface temperature of the melting silicon and melting time was deduced from Langmuir’s equation and Henry law. It showed that the removal efficiency of impurity aluminum increased with the increase of the melting time and the surface temperature of the melting silicon. Good agreement was found between the calculated value and the measured value.
Key wordsinorganic non--metallic materials     silicon     electron beam melting     segregation    evaporation
收稿日期: 2010-04-19     
ZTFLH: 

TF114.17

 
1 L.J. Liu, S. Nakano, K. Kakimoto, Carbon concentration and particle precipitation during directional solidification of multi-crystalline silicon for solar cells, Journal of Crystal Growth, 310(7-9), 2192(2008) 2 LV Dong, MA Wenhui, WU Jijun, YANG Bin, DAI Yongnian, New process principle and research advances of production of solar grade silicon by metallurgical method, Materials Review, 23(3), 30(2009) (吕东,马文会,武继君,杨斌,戴永年,冶金法制备太阳能级多晶硅新工艺原理及研究进展,材料导报, 23(3),30(2009)) 3 F. A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell System Technical Journal, 39, 205(1960) 4 K. Morita, T. Miki, Thermodynamics of solar-grade-silicon refining, Intermetallics, 11, 1111 (2003) 5 K. Choudhury, E. Hengsberger, Electron beam melting and refining of metals and alloys, ISIJ International, 32(5), 673(1992) 6 T. Ikeda, M. Maeda, Purification of metallurgical silicon for solar-grade silicon by electron beam button melting, ISIJ International, 32(5), 635(1992) 7 K. Hanazawa, N. Yuge, Y. Kato, Y. Kato, Evaporation of phosphorus in molten silicon by an electron beam irradiation method, Materials Transaction, 45(3), 844(2004) 8 HU Gengxiang, CAI Xun, RONG Yonghua, Fundamentals of Material Science(Shanghai, Shanghai Jiaotong University Press, 2006) p.267 (胡赓祥,蔡珣,戎咏华,材料科学基础(上海,上海交通大学出版社,2006) p.267) 9 E. K. Ohriner, Purification of indium by electron beam melting, Journal of Alloys and Compounds, 461(1-2), 633(2008) 10 H. G. Lee, Chemical Thermodynamics for Metals and Materials (London, Imperial College Press, 1999) p.121 11 T. Miki, K. Morita, N. Sano, Thermodynamics of phosphorus in molten silicon, Metallurgical and Materials Transaction B, 29(5) 29, 1043(1998) 12 O. Kubachewski, C.B. Alock, Metallurgical Thermo chemistry (New York, Pergamon Press, 1979) p.187
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.