Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 259-265    
  研究论文 本期目录 | 过刊浏览 |
一种SCWR包壳管用9--12\%Cr低活性F/M钢的组织及析出相研究
胡加学1,  刘国权1,2,  胡本芙1,  肖翔1
1.北京科技大学材料科学与工程学院 北京 100083
2.新金属材料国家重点实验室 北京 100083
Microstructure and Precipitate Phases of a New Low--activation 9--12%Cr F/M Steel for SCWR Fuel Cladding Material
HU Jiaxue 1, LIU Guoquan 1,2, HU Benfu1, XIAO Xiang1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

胡加学 刘国权 胡本芙 肖翔. 一种SCWR包壳管用9--12\%Cr低活性F/M钢的组织及析出相研究[J]. 材料研究学报, 2010, 24(3): 259-265.
, , , . Microstructure and Precipitate Phases of a New Low--activation 9--12%Cr F/M Steel for SCWR Fuel Cladding Material[J]. Chin J Mater Res, 2010, 24(3): 259-265.

全文: PDF(1264 KB)  
摘要: 

运用Thermo--Calc软件进行热力学计算, 预测了一种新型9--12%Cr低活性F/M(铁素体/马氏体)实验钢的组织。对淬火回火热处理后的显微组织进行了观察, 并对析出物进行电子衍射结构分析和EDS化学成分检测。结果表明, 实验钢是典型的回火板条马氏体组织, 位于各种晶界上的析出物均为富Cr的碳化物M23C6, 其化学成分随碳化物的形貌变化而变化。对实验钢进行60%冷变形并随后在820℃退火10--300 min, M23C6在完全再结晶、奥氏体相变过程中进一步球化, Cr、W不断富集, Cr/Fe逐渐升高至2后成分趋于稳定, 化学组成接近于(Cr15Fe6W2)C6。

关键词 金属材料  铁素体/马氏体钢 热处理   显微组织 碳化物    
Abstract

Thermo–Calc software was used to predict the microstructure of a new 9–12%Cr low–activation F/M steel designed for SCWR fuel cladding tube material. The microstructure of the experimental steel after quenching–and–tempering heat treatment was observed, and the chemistry and other characteristics of the precipitates were studied. The results showed that the experimental steel had a typical tempered martensitic structure. The precipitates located in various boundaries were Cr–rich carbides M23C6. After quenching and tempering, the specimens were cold deformed to a reduction of 60% and then annealed at 820   for 10–300 min. M23C6 wouldn't disappear during the process of recrystallization and transformation from ferrite to austenite at high temperature. The proportion of Cr to Fe was increasing during the process and finally reached to 2. The chemistry composition was (Cr15Fe6W2)C6.

Key wordsmetallic materials    ferritic/martensitic steels    heat treatment    microstructure    carbides
收稿日期: 2009-10-26     
ZTFLH: 

TG142

 
基金资助:

国家九七三计划2007CB209801资助项目。

1 S.Baindur, Materials challenges for the supercritical water–cooled reactor (SCWR), Bulletin of the Canadian Nuclear Society, 29(1),32 (2008) 2 C.Sun, R.Hui, W.Qu, S.Yick, Progress in corrosion resistant materials for supercritical water reactors, Corrosion Science, 51, 2508(2009) 3 P.Yvon, F.Carre, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, 385, 217(2009) 4 K.L.Murty, I.Charit, Structural materials for Gen–IV nuclear reactors: Challenges and opportunities, Journal of Nuclear Materials, 383, 189(2008) 5 R.L.Klueh, D.R.Harries, High–chromium Ferritic and Martensitic Steels for Nuclear Applications (USA, ASTM, 2001) p.28 6 R.L.Klueh, Elevated–temperature Ferritic and Martensitic Steels and their Application to Future Nuclear Reactors (Tennessee, ORNL, 2004) p.13 7 F.Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra–supercritical power plants, Science and Technology of Advanced Materials, 9, 1(2008) 8 V.Kneˇzevi´c, G.Sauthoff, J.Vilk, G.Inden, A.Schneider, R.Agamennone, W.Blum, Y.Wang. A.Scholz, C.Berger, J.Ehlers, L.Singheiser, Martensitic/Ferritic super heat–resistant 650 steels–design and testing of model alloys, ISIJ International, 42(12), 1505(2002) 9 V.Kne?zevi´c, J.Balun, G.Sauthoff, G.Inden, A.Schneider, Design of martensitic/ferritic heat–resistant steels for application at 650 with supporting thermodynamic modelling, Materials Science and Engineering A, 477, 224(2008) 10 J.M.Vitek, R.L.Klueh, Precipitation reactions during the heat treatment of ferritic steels, Metallurgical Transactions A, 14(6), 1047(1983) 11 KANG Renmu, LIU Guoquan, HU Benfu, HU Jiaxue, WU Kai, XU Kun, Optimization design of reduced–activation ferritic/martensitic steels for SCWR fuel cladding materials, Atomic Energy Science and Technology, 43(6), 523(2009) (康人木, 刘国权, 胡本芙, 胡加学, 吴 凯, 徐 锟, 超临界水冷堆燃料包壳管用低活性F/M钢的优化设计, 原子能科学技术,  43(6), 523(2009)) 12 M.Hayakawa, K.Yamaguchi, M.Kimura, K.Kobayashi, Visualization of subgrain structures for a ferritic 12Cr–2W steel using backscattered scanning electron microscopy, Materials Letters, 58, 2565(2004) 13 F.Abe, Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution, Materials Science and Engineering A, 510–511, 64(2009) 14 M.Kimura, K.Yamaguchi, M.Hayakawa, K.Kobayashi, K.Kanazawa, Microstructures of creep–fatigued 9–12%Cr ferritic heat–resisting steels, International Journal of Fatigue, 28, 300(2006) 15 S.Morito, H.Tanaka, R.Konishi, T.Furuhara, T.Maki, The morphology and crystallography of lath martensite in Fe– C alloys, Acta Materialia, 51, 1789(2003) 16 S.Morito, X.Huang, T.Furuhara, T.Maki, N.Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Materialia, 54, 5323(2006) 17 P.J.Ennis, A.Zielinska–Lipiec, O.Wachter, A.Czyrska–Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Metallurgica, 45(12), 4901(1997) 18 R.C.Thomson, H.K.D.H.Bhadeshia, Carbide precipitation in 12Cr1MoV power plant steel, Metallurgical Transactions A, 23(3),1171(1992) 19 M.Tamura, H.Hayakawa, A.Yoshitake, A.Hishinuma, T.Konda, Phase stability of reduced activation ferritic steel: 8%Cr–2%W–0,2%V–0,04%Ta–Fe, Journal of Nuclear Materials, 155–157, 620(1988) 20 Y.Kadoya, B.F.Dyson, M.Mclean, Microstructural stability during creep of Mo or W bearing 12Cr steels, Metallurgical and Materials Transactions A, 33(8), 2459(2002)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.