Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 169-174    
  研究论文 本期目录 | 过刊浏览 |
热变形镁合金退火显微组织的定量研究
杨续跃1;2; 朱亚坤1; 张雷1
1.中南大学材料科学与工程学院 长沙 410083
2.中南大学有色金属材料科学与工程教育部重点实验室 长沙 410083
Quantitative Studies of the Microstructure of Hot Deformed Magnesium Alloy
YANG Xuyue 1;2 ;  ZHU Yakun1 ;  ZHANG Lei1
1.School of Materials Science and Engineering; Central South University; Changsha 410083
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
引用本文:

杨续跃 朱亚坤 张雷. 热变形镁合金退火显微组织的定量研究[J]. 材料研究学报, 2010, 24(2): 169-174.
, , . Quantitative Studies of the Microstructure of Hot Deformed Magnesium Alloy[J]. Chin J Mater Res, 2010, 24(2): 169-174.

全文: PDF(1008 KB)  
摘要: 

对热变形AZ31镁合金的显微组织、晶粒尺寸分布、平均晶粒尺寸、再结晶晶粒数目以及变形织构随退火时间的变化进行了定量分析, 研究了不同热变形量AZ31镁合金在503 K的等温退火行为。结果表明: 热变形AZ31镁合金的细晶组分随着退火时间的延长不断降低, 退火过程按退火温度可分为孕育、再结晶急速长大和晶粒正常长大三个阶段, 且各阶段的其长短几乎不受变形程度的影响。 变形形成的微观织构在整个退火过程中几乎没有变化, 说明热变形镁合金在退火过程中没有新核形成, 即为连续静态再结晶。

关键词 金属材料  热变形镁合金  退火  微观织构  连续再结晶    
Abstract

The static recrystallization of hot-deformed magnesium alloy AZ31 during isothermal annealing were investigated at temperature 503 K by optical and SEM/EBSD metallographic observation. The grain size (D) change during isothermal annealing is categorized into three regions, i.e. an incubation period for grain growth, rapid grain coarsening, and normal grain growth. The number of fine grains per unit area, however, is reduced remarkably even in incubation period. This leads to grain coarsening taking place continuously in the whole period of annealing. In contrast, the deformation texture scarcely changes even after full annealing at high temperatures. It is concluded that the annealing processes operating in hot-deformed magnesium alloy can be mainly controlled by grain coarsening accompanied with no texture change, that is, continuous static recrystallization.

Key wordsmetallic materials     hot deformed magnesium alloy    annealing    microtexture    continuous recrystallization
收稿日期: 2009-09-17     

1 D.Lahaie, J.D.Embury, M.M.Chadwick, G.T.Gray, A note on the deformation of fine grained magnesium alloys, Scripta Metallurgica et Materialia, 27(2), 139(1992)
2 J.Xing, H.Sohde, X.Yang, H.Miura, T.Sakai, Ultra-fine grain development in magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions, Materials Transactions, 46(20), 1646(2005)
3 X.Yang, H.Miura, T.Sakai, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation, Materials Transactions, 44(1), 197(2003)
4 M.R.Barnett, M.D.Nave, C.J.Bettles, Deformation microstructures and textures of some cold rolled Mg alloys, Materials Science and Engineering, A386, 205(2004)
5 H.Watanabe, T.Mukai, K.Ishikawa, Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy, Journal of Materials Processing Technology,182, 644(2007)
6 A.Styczynski, Ch.Hartig, J.Bohlen, D.Letzig, Cold rolling textures in AZ31 wrought magnesium alloy, Scripta Materialia, 50, 943(2004)
7 S.R.Agnew, O.Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International journal of plasticity, 21, 1161(2005)
8 F.Kaiser, D.Letzig, J.Bohlen, A.Styczynski, Ch.Hartig, K.U.Kainer, in Magnesium Alloys 2003, Anisotropic Properties of Magnesium Sheet AZ31, edited by Y.Kojima, T.Aizawa, K.Higashi, S.Kamado (Switzerland, Trans. Tech. Pub., 2003) p.315
9 R.D.Doherty, D.A.Hughes, F.J.Humphreys, J.J.Jonas, D.J.Jensen, M.E.Kassner, W.E.King, T.R.Mcnelley, H.J.Mcqueen, A.D.Rollett , Current issues in recrystallization: a review, Materials Science and Engineering, A238, 219(1997)
10 T.Mohri, M.Mabuchi, N.Nakamura, T.Asahina, H.wasaki, T.Aizawa, K.Higashi, Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Materials Science and Engineering, A290(1-2), 139(2000)
11 R.Kaibyshev, A.Galiyev, O.Sitdikov, On the possibility of producing a nanocrystalling structure in magnesium and magnesium alloys, Nanostructured Materials, 6(5-8), 621(1995)
12 X.Yang, H.Miura, T.Sakai, Isochronal Annealing Behaviors of Magnesium Alloy AZ31 After Hot Deformation, Materials Transactions, 46(12), 2981(2005)
13 X.Li, P.Yang, L.N.Wang, L.Meng, F.Cui, Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31, Materials Science and Engineering, A517, 160(2009)
14 A.G.Beer, M.R.Barnett, Microstructure evolution in hot worked and annealed magnesium alloy AZ31, Materials Science and Engineering A, 485(1-2), 318(2008)
15 M.T.Prm´ erez-Prado, O.A.Ruano, Texture evolution during annealing of magnesium AZ31 alloy, Scripta Mater, 46(2), 49(2002)
16 G.Gottstein, T.Al-Samman, Texture Development in pure mg and mg alloy AZ31, Materials Science Forum, 495/497, 623(2005)
17 T.Al-Samman, G.Gottstein, Deformation conditions and stability of the basal texture in magnesium, Materials Science Forum, 439/543, 3401(2007)
18 T.Al-Samman, B.Ahmad, G.Gottstein, Uniaxial and plane strain compression behaviour of magnesium alloy AZ31: a comparative study, Materials Science Forum, 550, 229(2007)
19 T.Al-Samman, Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy, Acta Materialia, 57(7), 2229(2009)
20 J.H.Driver, Stability of nanostructures metals and alloys, Scripta Mater, 51(8), 819(2004)
21 F.J.Humphreys, M.Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed, (Oxford, UK, Pergamon Press, 2004) p.451
22 M.Ferry, N.Burhan, Structural and kinetic aspects of continuous grain coarsening in a fine-grained Al–0.3Sc alloy, Acta Materialia, 55(10), 3479(2007)
23 H.Jazaeri, F.J.Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-the deformed state, Acta Materialia, 52(11), 3239(2004)
24 H.Jazaeri, F.J.Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: II-annealing behaviour, Acta Materialia, 52(11), 3251(2004)
25 F.J.Humphreys, A unified theory of recovery, recrystallization and grain growth, basedon the stability and growth of cellular microstructures-I. The basic model, Acta Materialia, 45(10), 4231(1997)
26 A.Takayama, X.Yang, H.Miura, T.Sakai, Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging, Materials Science and Engineering A, 478(1-2), 221(2008)
27 S.E.Ion, F.J.Humphreys, S.H.White, Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium, Acta Metallurgica, 30, 1909(1982)
28 A.Galiyev, R.Kaibyshev, G.Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Materialia, 49, 1199(2001)
29 YANG Xuyue, SUN Zhengyan, Static recrystallization of magnesium alloy AZ31 after severe deformation, The Chinese Journal of Nonferrous Metals, 19(8), 1366(2009)
(杨续跃, 孙争艳, 强变形AZ31镁合金的静态再结晶, 中国有色金属学报, 19(8), 1366(2009))
30 A.M.Wusatowska-Sarnek, H.Miura, T.Sakai, Influence of deformation temperature on microstructure evolution and static recrystallization of polycrystalline copper, Materials Transactions, 42(11), 2452(2001)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.